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CONSTRUCTION OF MODULAR FORMS

BY

JOSEPH LEWITTES'

ABSTRACT

Modular forms arising from lattices are constructed and their transformation
properties under the full modular group are obtained in explicit form suitable
for calculation. The forms are obtained via specialization of the several variable
theta function.

Introduction

Theta series associated with positive integral quadratic forms have a long
history. Among the classical papers concerned with this topic we cite Hurwitz
[4], Hecke [3] and Schoeneberg [7]. In these and others one obtains a function f
of the complex variable 7 in the upper half plane and studies its behavior under
the mappings 7— 7+ 1 and 7 — — 1/ which generate the modular group I'.
One then deduces that f is a modular form for a suitable subgroup G of I'.
However there seems to be no systematic investigation as to how f transforms
under a general element of I'. Knowledge of this type is indispensable though
when one wishes to obtain the appropriate expansions at all the cusps of G. Our
attitude here is to be as explicit as possible in all constructions so that in any
given case calculations should actually be feasible.

The functions that we consider are a generalization of those of Hecke and
Schoeneberg but we approach them via specialization of the theta function of
several variables. Use of the ‘characteristic’ notation of this function is amenable
to our purposes. Also the methods developed here may be found useful in the
study of modular functions of several variables. Rather than working with a
quadratic form we start with a lattice in R" and certain related spaces. This
appears to be a natural point of view and allows for greater flexibility and
generality.

By way of illustration of what is to be discussed, let £ be a lattice in R" such
that | A | (= A - A, usual norm and inner-product) is an even integer for every
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A € Z. Define the integer L =g.c.d.{(1/2)| A |: A € £} and with x,y € R™ and
7 as above, set

¢z[;](7)=A§$exp<2wi(A +x)y+ wi%“)\ +x ||2>

Then we obtain the transformation formula for M = (g :) €T,

ll'x[ Xx ](M(T)) ax + Lc
— p mivix, y, M y + B
(cr+d)? e ? ;, HM, ﬁ)lllz[ bx/L + dy ](T)'

Here v(x,y,Mu)= —(ab/L)|x|?—Lcd||y[F—2bcx -y and J is the finite
abelian group LL*/ ¥, £* the dual lattice of £. B € J means 8 ranges over a set
of coset representatives of L¥* mod £. The coefficients t(M, 8) depend on M, ¥
and 8 mod & but not x, y or 7. Considering 8 — (M, B) as a complex valued
function ¢(M) on the group J we find that the (M) all have the same norm, as
elements of the finite dimensional Hilbert space of functions on J, and that

t(MS), S = ((1) _01> is up to an eighth root of unity the Fourier transform of

t(M). The t(M) are known initially only for § and T = <(1) i), generators of T,

but by iteration we obtain them for all M € I'. The final result involves the group
structure of J and we get explicit formulas at least for the case where A, the
order of J, is odd. To get these formulas we must evaluate a Gauss-like sum

{u1k§+- ot k2-2k ky—- - —2k,k ;
ky, - ky modm

here ¢ is a primitive mth root of unity, m odd, r=1 and u,,---,u, k are
arbitrary integers.

In Section 1 we discuss lattices and introduce the class of lattices which are our
main concern.

Section 2 introduces the theta function and develops the transformation
theory as needed. At the end of this section we reach our first main theorem. The
coefficients t(M) are investigated systematically in Section 3. Along the way we
discover two invariants W = * 1 and &, a fourth root of unity, of our lattices and
the relation between them is found. It will be evident throughout that the
number 2 plays a special role and our results are complete only in case A is odd.
An analysis of the even A is left to the future but the general picture should be
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the same. Finally in Section 4 we give examples arising from number fields,
particular attention being given to the imaginary quadratic fields.

We must admit that our treatment is incomplete in that the functions we study
have not been integrated into the framework of the general theory of modular
forms. Presentations of this theory from various viewpoints are given in the
books of Eichler [2], Lehner [5] and Shimura {8]. Thus we must defer until later
such questions as the relations among these functions and the Eisenstein and
Poincaré series, Petersson inner product, Hecke operators and so on. Ultimately
it is hoped that a careful cataloguing of the various modular forms obtained by
these methods will enable one to write down explicitly a basis for the cusp forms
of weight two (= abelian differentials of first kind) for the groups I'o(m) and
I'(m). Some progress has been made in this direction but a discussion of this
program is outside the scope of this paper.

1. Lattices

Let n be a positive integer and C" the space of n-tuples of complex numbers,
taken as column vectors. The entries {or coordinates) of z € C” are usually
denoted z,,- -, z,; thus ‘z is the row (z,," -'-, z,), ‘t’ indicating the transpose.
The dot product for z,w € C" is z - w = zw = 2{., zxw, and the length of z,
|z, is given by ||z |? = z - Z, the bar indicating complex conjugate. If M is an
n X n matrix the notation M[z] = z - Mz = 'zMz is convenient and will be used.

Let r;, r, be non-negative integers with r, +2r,= n.  M™ s the set of vectors
in C" whose first r, entries are real and whose last r, entries are the complex
conjugates of the preceding r,. Thus z € M2 if andonly if z, =z, 1=k =1,
and z,ipek = Zoei, 1 =k = 1, If one of r; or r, is zero the obvious modifications
must be made in the previous sentence. If r; = n, r, = 0, #™° is just R", the space
of real vectors. From now on we consider n, r,, 7; as fixed and write simply # for
M. Note that z € M implies 7 € M and for z,w E M, z - w is real and

1) lz+wiF=lzP+wilF+2z-w.

M is a real vector space of (real) dimension n with a basis given by the
columns of the n X n matrix

E. 0 0
@) === | 0 E, iE;
0 E, -iE

Here E; is the identity matrix of size r, (j = 1,2,) and each 0 is a zero matrix of
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appropriate size. Any n X n matrix whose columns form a basis of # will be
called a basic matrix for 4. Another important matrix is

E. 0 0
3) R=R 2= | 0 0 E
0 E, 0

If A is a nonsingular matrix we set A* =‘A " so that, when defined, (AB)* =
A*B*.

ProrosiTiON 1.
1) det ® =(-2i)? and ®*=PH,

E, 0 0
H = 0 %Ez 0
0 0 -—iE,

ii) A is a basic matrix for M if and only if A = ®G, G an n X nreal nonsingular
matrix.

iii) If A is a basic matrix for M then so is A*.

iv) R="R=R7"=R* detR =(-1)2Ifx,y € M and A is a basic matrix for
M then Rx =%, RA=A, x-§ ="xRy, and | x|?= R[x].

Proor. (i), (ii), (iv) are straightforward linear algebra. For (iii), note that, by
(ii), A=PG so A*=O*G* = D(HG*) whence, by (ii) again, A* is a basic
matrix.

A lattice in 4 is a free abelian group (under vector addition) generated by a
basis of /. Thus every lattice, as a free abelian group of rank n, has a basis which
at the same time is a vector space basis for . If the vectors A;, - - -, A, of M are a
basis for the lattice & the matrix A whose columns are Ay, - -, A, is called a basic
matrix for &Z. A is then a basic matrix for / also. Conversely if A is a basic matrix
for A it is also a basic matrix for the lattice £ consisting of all integral linear
combinations of the columns of A. The simplest example of a lattice is Z", the
lattice of integral vectors in M™°= R".

Let £ be a lattice in # with basic matrix A. Then, by the above remarks,
every z € M has a unique expression as z = A§, £ € R", and z € & if and only if
£ € Z". The totality of basic matrices for £ is {AU}, U ranging over all n X n
unimodular matrices (integral matrices of determinant +1). £ ={A: A € L}isa
lattice with basic matrix A and for ¢ a nonzero real number ¢ ={cA: A € L}is
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a lattice with basic matrix cA. If ¢ is an integer then cZ is a sublattice of £ with
index (in the sense of group theory) [£: c£] =| ¢ |". In the following proposition
we give two basic definitions.

ProposiTiON 2. Let & be a lattice in M with basic matrix A.

i) The discriminant of &, D(&), is defined by D(£)= (detA). It depends
only on £ and not the choice of A. D(Z) is a real number, positive if r, is even,
negative if r, is odd. |D(¥)|=(—1)D(¥). D(£)=D($ and D(c$ =
c"D(Z).

ii) Let &, be a lattice with basic matrix A,. Then &, is a sublattice of &£ if and
only if Ai=AG, G a nonsingular integral matrix. It this case then, [£: %] =
|det G| and D(%) = [¥%: LD (&P.

iiily £*={z €M, z - A € Z forevery A € £} is a lattice, called the dual lattice
of £. A* is a basic matrix for £* and D(£*)= D(H 7, (L*)* = %, (D * = (£*),
(cH*=c' P>,

Proor. If U is unimodular, (det AU)* = (det A)}, which shows D (%) is well
defined independent of the choice of the basic matrix A. By Proposititon 1 we
may write A=®G, D(¥)=(detA) = (det®)(det G) = (—2i)*(det G} =
(—1)2p, p a positive real number. The rest of (i) is clear. (ii) is standard matrix
and group theory, for details see [1, p. 125]. For (iii) it is clear that £* is a
subgroup of . By Proposition 1 (iii), A* is a basic matrix for # along with A, so
we can express Zz EM as z=A*¢, ¢ER", and A€ X as Au, u € Z". Then
z+-A=¢-uisaninteger forallu € Z" if and only if £ € Z", i.e., z is an integral
linear combination of the columns of A*. Thus £* is the lattice generated by the
columns of A*. The rest is obvious.

We are interested in lattices &£ with the property:

4 A - @ isaninteger forallA, u € ZL.

It follows then that ||A |2 = A - A is an integer. However, for the purpose of the
functions to be constructed it is more convenient to have || A ¥ an even integer.
Thus we define: A lattice £ satisfying (4) is odd if for some A € &, || A | is an odd
integer and is even if | A |” is an even integer for all A € . For example, Z" is
odd. If & is an odd lattice, then it is easily verified, using (1) and (4), that
Lo={A € ZL:||A|’is even}is an even lattice of index 2 in £. Note also that every
sublattice of an even lattice is even and if & is even so is Z. The condition (4) is
equivalent to ¥ C £*, and in the next propostion we obtain a refinement of this.

ProrosiTiON 3. Let & be an even lattice. Define the positive integer L =
L(£)=gcd {(1/2)|A|: 1 € £}
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i) Forall ,p€Z, A-a=0(modL).

ii) & is a sublattice of L¥*. If A=A(¥) is the index [LZ*:¥| then
|D($ |=L"A.

iii) L($) =L($), AP =A(D. If ¢ is a nonzero integer L(cF) = c*L(D),
A(cH =A(D.

Proor. Forall A € Z, | A |*=0(mod 2L ) whence by (1), with z, w replaced by
A, 1, 2A - 2 =0(mod 2L ) which gives (i). (i) can be restated as A - @ /L € Z so
that /L€ ZL*, pn € L¥* ie., & is a sublattice of LZ*. Since &£ Cc P*,
Proposition 2, (ii), (iii) show that [¥*: £} = D(£L)D(Z*)= D(¥) so that
taking (positive) square roots, |D(¥)|=[F*: ] =[F*: LE*|[LE*: ¥]=
L™ A which proves (ii). (iii) is easy.

If £ is a lattice satisfying (4), and A a basic matrix for & with columns
A"+, A, then every A€ X is A =Au, u€2Z" and || A |f=Sfiar apuie is a
positive definite quadratic form Q(u) in uy,---, u, with integral coefficients
@i = A; * Ac = ax;. The matrix (ax ) ="'AA is a positive definite integral symmetric
matrix, with even diagonal coefficients if & is even. In this latter case it is clear
that L = L (%) is the largest positive integer such that ‘AA = LA, A an integral
symmetric matrix with even diagonal entries. Then det (AA)= L" det A while
on the other hand det (‘AA)=|D(£)|=L"A. Thus A =det A and if n is odd it
is not difficult to see that det A must be even so we deduce that

) if A is odd n must be even .

Example of lattices arising from algebraic number fields and the related
quadratic forms will be discussed in Section 5. We only point out here that two
different lattices may give rise to the same quadratic form Q. For example, let £
be the even lattice in #*° consisting of all A € Z?such that || A | is even. Then

A=(11 —11) |

is a basic matric for £ and D(¥)=4. Let &’ be the even lattice in M#** with
basic matrix
(1 i
v=(] %)

Then D(Z£’)= —4 and both &£ and £’ give rise to the same quadratic form
Q(uy, u;) =2(ui+ ul).
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2. The Theta function

The generalized upper half plane of degree n, ¥, is the set of n X n complex
symmetric matrices with positive definite imaginary part. In particular #°, or
simply J, is the usual upper half plane. For x, y,z € C" and Z € " the series

(6) E e21ri(m+x)~(z+y)+1ril[m+x]
mez"

is absolutely convergent and uniformly convergent on compact subsets of
C"xX C"x C"x #". The function defined by (6) — analytic in x,y,2,Z — is
called the @ function, denoted 6[; ](z, Z). x, y are usually taken as fixed and [} ]
is then called the characteristic of the 6 function. Note that 8[;](z,Z)=
0[5 ](y + z, Z) so that y or z might be dispensed with, but our notation is more
or less traditional and has its advantages. There is a vast literature devoted to the
# function but we shall be able to develop here most of those properties that we
intend to use. References to the classical literature along with detailed develop-
ment of the theory from the point of view of applications to Riemann surfaces
will be found in the book by Rauch and Farkas [6]. A concise introduction to the
6 function is presented by Eichler [2]. The reader should be forewarned that the
notation in this subject has never been standardized and one must exercise some
caution when using different sources.

Now we associate a # function with each lattice .#, essentially by replacing in
(6) the sum over Z" by a sum over the vectors in . First though we must define
' the analogue of #". The condition that a symmetric matrix Z be in ¥" is
(Im Z)[€] >0 for all £ € R", £# 0, which can also be expressed as Im (Z[£]) > 0.
We define now #™" as the set of n Xn complex symmetric matrices V
satisfying Im (V[x]) >0 for all x € M2, x # 0. Thus ™" is the original " If A
is a basic matrix for M setting x = A¢, £ € R", we see that V € #™ 2 if and only
if 'AVA € %" In particular, as it is known that — Z7'€ #" if Z € ¥" it follows
that — V7' & %™ = whenever V € ¥'v2. Indeed, V € ¥™ " implies — (AVA)™'
='A*(— V)A*E€ X" and since A* is also a basic matrix for /M the result
follows. Every matrix of the form

U 0 0
v={ 0 S T
0 T S

with UE€ #", TE€ ¥™ and S an arbitrary r, X r, symmetric matrix is in #" ",
For, any x € M is
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a
X = b+ic
b—ic/ ,

a ER", b,c €R"” and a calculation shows
Im(V{x])=Im Ula]+2Im T[b] +2Im T[c]

which is positive unless a =0, b = ¢ =0, i.e. x = 0. In particular, if r € ¥ then
V=7R (R asin (3)) is in #""2 and — V'=(-1/7)R.

Now let £ be a lattice in M = M2, x,y,z € C", VE X" and define the
function ¢ by

x , _
7 7] [ ] . V)= 21rl(A+x)-(z+y)+mV[A+x]'
” o[y [ @)= 2,
In case &£ = Z" this coincides with the original 8 defined by (6). If A is a basic

matrix for &£ we see that

@) Gz[;](z, V)= o[{‘A;x]('Az,'AVA)

so that there is no problem as to convergence in (7) and analyticity in x, y, z, V.
However the great advantage in working with 6. as defined by (7) rather than
with the right side of (8) is that one can deal directly with a lattice and there is no
need to specify any particular basic matrix. Along with 8, we consider the
functions obtained by differentiating with respect to the coordinates z; of z. Let
s = (s1, 52, * * *, 5) be a finite sequence of integers, 1 = s5; = n for each j, and define

a ]

82,0z, - 9z,

©) 02| X vy o[*]e v

[ is the length of the sequence s and we agree to allow also s = (0), the empty
sequence of length | = 0 with the usual convention 89 = 6. The series (7) can be
differentiated term by term and we obtain

og,) [ X :|(Z, V) — (2771)1 2 C(s)(A, x)e21r|'(A+x)~(z+y)+m‘V[;\+x]
y r\EZ

(10)
¢\ x)= lil (A, + x,)

where A,,, X, is the s,th component of the vector A, x, respectively.
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PROPOSITION 4.
1) Forue¥ ve

o‘;’[’y‘ N "](z V)= et ”0"’[x](z, V).
In particular, 69[*3* |(z, V) = 69} I(z, V).

i) If & is a sublattice of ¥. of index A and B,,---,Bs is a set of coset
representatives of ¥, mod ¥ — %, = U;L.(B,- + £)—then

02] ¥ v=3 0[Pl v).

iii) If &' is a lattice in M2, r{+2r,=n, A, A’ are basic matrices for £, &'
respectively, and W = (Wi )i=jx=n= A'A"" then

(11) eg.[x](z, V)= og[‘,v x](‘Wz ‘WVW).
y w
If s is any sequence with length | >0 then

n

WAI
(12) 0&:’)[;](2, V) = 2 WSlk] Wszkz ttt WSlkl 0(521, [ x]( W ‘WVW)

ki, k=1

Proor. (i) follows by direct substitution in (10) noting that as A ranges over &

so does A + u and e*™ ¥ = 1. (ii) is proved similarly. The first part of (iii) follows

from (7) upon replacing ¥ by £’ and noting that as A ranges over &, A’ = WA
ranges over £’. Successive differentiation of (11) yields (12).

A special case worth mentioning is: If £’ = c¢¥, ¢ a nonzero real number, we
can take A' = cA, W = cE, E the n X n identity matrix, and obtain for [ = 0,

(13) 0‘3)[ ](z V)—c‘O"’[ ](cz c*V).

Taking ¢ = -1, c¥ =¥ and

(14) 0‘}’[;](2, V)=(—1)‘0‘§)[:;](—z, V).

If furthermore 2x € %, 2y € ¥* and 2x -2y = k € Z then
R ey O e %

(by (i) of the proposition) = (—1)**'09[}]1(z, V) (by (14)). In this case then
09[3]1(z, V) is an even or odd function of z. When odd, 8%’[:](0, V) is
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identically zero as a function of V. In particular 8%[J] (0, V') vanishes identically
in V when [ is odd.

The next step is to carry over to 8% part of the transformation theory of the 6
function. For our purposes we take as our starting point the known formula

(15) o[ : ](z, — Z7Y)y = g?miyrmizia) WO[ _yx ](Zz, Z).

We claim that for 8¢ this becomes

(16) 02[;]@ — VTl = g2y miviz] \/%‘Q og.[ _yx ](Vz, V).

This is deduced by expressing the left side of (16) as an ordinary 8 via (8), — V™
is thus replaced by ‘A(— V')A = —(A*VA*)", then apply (15) with Z =
'A*VA* and recalling that A* is a basic matrix for £* a reverse application of (8)
brings us to 6¢-. The discriminant D(£) enters from det(—i‘A*VA*)=
det(—iV)(det A)>=det(—iV)/D(Z). The square root in (15) is determined
uniquely by the condition that for Z = {E Vdet(—iZ)=1 and then by analytic
continuation, since #" is simply connected.

If both sides of (16) are differentiated successively with respect to z,,, z,,, - * - as
before the formulas become quite complicated, so henceforth we shall restrict
ourselves to the case which finds immediate application in this paper. From now
on we consider only x, y € # and V = 7R. Furthermore we write 89[}](z, 7) in
place of 89[;](z, 7R) and 0%’[;](7) in place of 69[;](0, 7). We have then —
noting Proposition 1(iv) and (10) —

A7) 9% [ x ] (z,7)= @mi) 2 ¢, x)eZwi()\+x)‘(z+y)+1ri-r!|A+x iz
y i€y

and (16) specializes to — using Proposition 1(iv) and Proposition 2(i) —

(18) Ox[;}(z, ~%) = g2 yrmirR[z] \/% 02.[ —yx ](TRZ, 7).

The linear transformation z — z’ = Rz permutes the coordinates of z. Carry-
ing over this permutation to the indices 1,---,n we set k'=k, 1=k =r,
k'=k+rn,n+1=k=n+r,andk’=k—r, rn+r+1=k =n Then the kth
coordinate of z'is z; = z, (k'Y = k, the j, k entry of R is R, « = 8u (Kronecker
8), R[z]=Zk.1 zxzi and (3 /32« )R|[z] = 2z,.. For the moment let us write (18)
as F(z)= A(z)B(z) where F(z) is the left side,
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A(z)=\/‘—(-1%;§le2"“"e”"““’ and B(z)= C(7Rz)

where C(z)= 0¢-[-2](z,7). Then (4A [3z.)(z)=2mirz A(2), (3B /dz.)(z) =
7(8C [/ dzv)(TRz) and (9F [ 3z )(2) = 2mitz A(2)B(z) + A(2)7(3C/ 8z )(7Rz).
A second differentiation with respect to z; then yields

3°F A 02k . d
32:97, (z)=27ir oz, A(z)B(2)+ 27itze 5z (A(z)B(z2))
., aC , 9°C
+27it’z; A(2) 9z, (7Rz)+ A(z)7 32002, (TRz).

In the formula for 4F/3dz. we see that setting z = 0 leaves only one nonzero
term on the right side, the one on the extreme right. The same is true for
3°F[82.9z; provided dz./dz; =0, i.e., k'#j. We thus define a sequence
s = (81, $2,** +, &) to be admissible if for every k which occurs as a term of the
sequence k' does not occur as another term of the sequence. For example, if
n =3, n=r,=1, the sequences (2,1,2,2), (3,3, 3) are admissible while (1,2, 3)
and (1,2,1) are not. Note that every subsequence of an admissible sequence is
admissible (including by convention the empty sequence of length 0) and that if s
is admissible so is s' = (s1, 3, - - -, 7). Clearly if r, = 0 an admissible s must have
I = n while if r,> 0, I can be arbitrarily large. An inductive argument now shows
that if s = (s, -+, s) is an admissible sequence then

d'F a'C

oz, (2)=2+A(2)r e

_—623, — -(7Rz)

o 0z,

where 2 is a sum of terms each having some z; as a factor so that z = 0 gives
2 =0. It follows that on differentiating (18) / times and setting z =0 we get

19) og)[;](—%)q"‘” \/’i% T'o;'z[_yx](f).

We now have to be explicit about the square root. We make the convention
that for any complex number b# 0, arg b is that value of the argument satisfying
-mw<argh=m, logh=1log|b|+iargh and b° = e '¢",

ProrosITION 5. Let £ be a lattice in M, x,y,€ M, and s an admissible
sequence of length | = 0. '

0 o[ 2o
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. @] x ol X
G 673 |m=62[5]m.
Proor. In (19) let s =(0), x =y =0 and obtain

SN

which for 7 =i becomes

*ﬂIIAHz —m A2
D e

As both series are sums of positive terms we see that f(7) =V (—ir)*/| D(&) | is
the unique analytic function of 7 € ¥ whose square is f(7)* and satisfies f(i) > 0.
According to our conventions (—i)"'>7"'?/V|D(Z)| has these properties,
hence is f(r), which proves (i). If A is a basic matrix for £ then A = RA is basic
for & so that in Proposition 4(iii) we can take W = R and (ii) then follows from
(12) with z =0, V=7R.

Keeping the hypotheses as in the above proposition let us further assume that
& is an even lattice, L = L(£), A = A(L) as defined in Proposition 3. We define

(20) F=L%* and J=§/2%.

J is a finite abelian group of order A whose elements are cosets a + %, a € £.
Allowing a slight abuse of language we also speak of the element a € J meaning
the coset a + % Also, for o, 8 € # or, more generally, a, B € #f we write
a=Bmod¥ for a-BEZL Now $*=(1/L)$ so application of (13) and
Proposition 5(ii) shows that Proposition 5(i) can be written

1) e&;’[;‘](—%) = e YJ—L___,D(;l "Z,Me;:’[ _(lL/yL)f ](»:/Lz).

By Proposition 4(ii),
. L o] Ly +B 2
of,)[ (1/L) ](T/L) ,;,0”[—(1@);](”“’

the sum over 8 € J meaning that B ranges over a set of coset representatives of
§ mod %. Putting this in (21), then replacing 7 by L1, recalling | D(£)| = L"A,
a slight manipulation yields

89| * (- 1/(L7))
. [X(L)m*' —e yL\_/_AL Z, m[ L()ll/-;f; ]( ):
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We have now achieved that functions of the same type 8% appear on both sides
of the equation. The reason for writing (22) with the extra power of Lt on the
left will appear below. Now we consider the effect of replacing 7 by 1+ u /L,
u € Z in 09[;](7). The typical exponential term in (17), with z =0, is then

2mi(A+x)-y+mir|A+x P+miu /LA +x|?

e
But

wi(u/L)JA+x|? win(| A ||2/L)e mi(u/L)|x ]|2e 2miA - (uE)/ L

[4 =e

Since || A |/ L is an even integer the first factor is 1. It is at this point that crucial
use is made of the fact that £ is even. The second factor is independent of A and
we can write

eZ‘rri()‘+x)<y+1rl'(‘r+(u/L))ﬂ»\+x||2 — e—m’(u/L)”x"ze21ri(A+x)-(y+(u/L)i)+‘rri-r||/\+x||2

Finally,

| * — /L)X P g(s) x
(23) 0% [y]('r-‘ru/L) e 0% [(u/L)f+y](T)'
To put these formulas in proper perspective we recall briefly some notions

ab
cd

2 x 2 matrices of determinant one, f = f(r) a function of + € # and let w € C.
The ‘stroke operator’ of weight (or degree) w is defined by

from the theory of modular forms. Let M = ( ) € SL (2, R), the group of real

_ _fMr) - _arth
@4 flut) =Grvay M =M =g

(ct + d)” is defined by our general convention on powers. Note that ¢+ d is
never zero and arg (¢t + d) is a continuous function of 7 in #. For fixed w we

write simply f | in place of f | 4. For fixed w and M f — f|u is linear in f and if f

ax bk

is analytic so is f|ux. If M, = (ck di

), k =1,2, and M = M; M, then

25)  (er+d)=(cMor)+di)(com + da), flm = 0(My, Mo)(f ) Ime

where

U(MI, M2) =y, (Ml’ Mz) - (Cl(MzT)(:T(t);gszT + dz)w ‘

We claim that v depends only on w, M\, M, but is constant in 7. In fact, by the
first equation of (25) and properties of the argument,



158 J. LEWITTES Israel J. Math.

(26) arg(cr + d)=arg(c.(M,1)+ d,) + arg (c.7 + do) + 27k

where k is an integer depending on M;, M, and continuous in 7, whence it is a
constant in 7. Thus k = k(M,, M,) can be computed by using any particular
convenient value r = 7, in (26). It follows from (26) that

(27) Uy (MI, Mz) = e—2m‘kw’ k = k(Ml, Mz) .

In particular, v, =1if wEZ, v, =v. if w=w' E€Z and f|um, = f|m|m, if
w € Z. Actually we shall always have 2w € Z so that v, = =1 in our applica-
tions.

The (homogeneous) modular group I'=SL(2,Z) is the group of all
M € SL (2, R) whose coefficients a, b, ¢, d, are integers. The inhomogeneous
modular group is the corresponding group of M&bius transformations  — M (7).

It is well known that I is generated by S = <01 _01 >, T= ((1) }

2 X 2 identity matrix, we have S’= —E, §’=8"', S*=E, (ST)’= —E, T =

). With E the

<(1) ';), ueZ It is easily seen from (26) and (27) that for all M=

(g:)esuz,m

-1 if ¢=0, d<0
(8) KM, T*)=k(T* M)=0, k(M,S)=
0 otherwise

Thus for any w, v, (M, T*)=v.(T*, M) =v.(M,S)=1 except in case ¢ =0,
d <0 where v,(M, S)=e>™,

ab

For any real r >0 and M=<c d

)eSL(z,R) let

M(')= (I: bd/r> € SL(Z, R),M-’ M,

is an automorphism of SL (2, R). Then one has
(29) k (Ml(’)7 Mz(,)) = k (Mh MZ)’ Uy (Ml(rb MZ(r)) = Uw (Mly M2) .

We now observe that using the stroke operator of weight n/2+ [ equations
(22) and (23) can be written upon suppressing the 7 as functional equations

).

miv(x, y. M) w|ax +cy+ ﬁ]
4 BZJ t(M, 3)02’ [ bx-+dy
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where M = <Z 5) is S¢, or T&y v(xy,Se)=2x-y, vix,y,Te)=

— /L) x P, t(Swy B) = (—i)*'*/ VA for all B and #(T%,, B)=0 or 1 accord-
ing as B#0mod ¥ or B =0mod ¥. Since every M ET can be expressed in
terms of S and T the same is true for every M € I’ in terms of S, and T, and
successive applications of (30) should yield a formula for every M € I'y,. The
question is what are the v(x,y, M) and the t(M, B). Suitable experimentation
leads one to introduce the following notions. For (x,y)EM XM, M=

ab
(c d)GSL(Z,R) define

(31) (x,y)eM = (ax + cy, bx + dy).

This is clearly an R-linear action on J( X (, but more interesting is that it is a
group action, as is easily checked:

(32) (x,y)o MiM, = ((x, y)° My)° M.
Now with (X, Y)=(x,y)°M define
(33) v,y M)=x-y-X-Y=—ab||x|f-cd|y|—2bcx -y

where we have used ad — bc = 1. Note that for M = S, or T{, this v(x, y, M)
coincides with that used in (30) above. v(x, y, M) satisfies a ‘cocycle’ condition:

(34) v(x, y, MiM,) = v(x, y, M)+ v{(x, y)°o M, M3).
The proof is easy: let (X, Y)=(x,y)e M, (£, 1)=(X, Y)o M, = (x,y)o M\M, by
(32), then v(xyMM)=x-y-&n=(x-y-X-V)+(X-Y~-§-9)=

v(x,y, M)+ v((x,y)> M, M;). We now state our basic theorem using the
terminology and results developed above.

THEOREM 1. Let £ be an even lattice in M. For each M €Ty, there is a
complex valued function t(M) defined on J such that for every x,y € M and
admissible sequence s

3],
y M
Note. We write t(M, B) for the value of the function t(M) at 8 rather than
H(M)B).

Proor. We already know the result is true for M = S, T(1, so the theorem
will be proven if we show that whenever the result holds for M, =

mwiv(x, y, M) (s) ax +C)7+B]
e ;;,Jt(M,B)()g [ bi+dy |
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(ak bk a b
G di cd
v(My, M2) = v, o(Mi, Ma), (X, Y)=(x,y)° My, (§,1)=(X, Y)o M= (x,y)°M;

then
= p%Y [ x ]
M y

;]
y
= vemren S o, gy 09 [ X 1P|
BEJ Y My

)EF(L), k =1,2 then it holds for M = ( )= MM, also. Let v =

My | M2

— wiv(x, y, M)}
=pe™ ! E
,BE

a.

e HXIBYM) (AL BY(M,, ) og,[az(X+ B)+ .Y+ a] .

bAX +B)+d,Y

J

A little calculation shows
v(X+B Y,M)=v(X,Y,M;)-2a,b,X - B —2b,c.Y - B — a:b.|| B|P-

Furthermore since M, €E'), Lb,E Z and B € § = L¥* whence b, € ¥* so
that the term b8 can be removed from the bottom of the characteristic by
Proposition 4(i) introducing an exponential factor. Finally collecting terms,

%[
y

=ve™ M X (M, B)H(M;, @) exp (miazhy| B I

M o pET
+2mib,B - &)02}’[§+ “;B * “].

Since in the last characteristic all that matters is a.8 + a mod £ the formula can
be rewritten as

1),
y M

(35) M, y)=v(My, My) 2 * t(M,, B)t(M,, a)exp (miab,| B | + 2wib.B - &)

miv(x, . M) @|axtcy+ Y]
€ ;} t(M, 7) 0% [ bi + dy

with

where 2* is the sum over all ordered pairs (B, @) in J X J such that a,8 + a =
v mod £. This completes the proof.

The function t(M) — which we consider simultaneously as a function on J and
as a function on # constant on cosets of ¥ — is not necessarily uniquely
determined, for M € I', does not have a unique expression as a word in S, and
Ty, and furthermore, the functions 69 [*;?](7), B € J, are not necessarily
linearly independent for fixed x,y. Thus #(M) is potentially a multi-valued
symbol but this will not matter as long as we take it to mean any t+(M) obtained

by expressing M as a word in Sy and T, and iterating, using (35) and the initial



Vol. 24, 1976 CONSTRUCTION OF MODULAR FORMS 161

values of ¢(S)), t(T{,) given after (30). Theorem 1 involves the group I'., which
depends on £ while it would be preferable to have the single fixed group I'. This
can be achieved by a change of variable in 7 (but then unfortunately L’s begin to
proliferate in the formulas). It is easily verified that if f, f,, - - -, fv are functions of
7 and f |m,, = Zk-1cfi, for certain constants ci, then the functions g(7) = f(r /L),
gi(r)= fi(r/L),- - satisfy g |u = Z¥_1cxg. Thus, writing the matrices M €T,
as My, M €T, and noting (29), we can reformulate the theorem as follows,
along with a summary of the basic formulas.

THEOREM 1'. Let & be an even lattice in M and define the functions

(36) w2 Fo=e2[F](£):

For each M = <Z (I;) €T there is a complex valued function t(M) on J such that

for any x,y € M and admissible sequence s,

— e‘rrl'v(x,y,M(L)) Ejt(M’ B)d]g:) [axb+ LC)-}. + B] )
ge

37 w@B] b

M

v(x,y, Mw))= —(ab/L)||x |F = Led ||y |F — 2bcx - y. The t(M) satisfy: t(S, B)=
(= )*IVA for all B, t(T*B)=1 if B=0 mod ¥ and 1(T* B)=0 if
B#0mod ¥, and

(38) t(MM,, y) = v(M,, M) D% t(M,, B)t(M;, a)

X exp (m<%) 1B+ 2m’<%> B d),

the sum being over all (B,a)EJXJ such that a,f+a=vymod¥ and
U(Mly Mz) = Un/z(Ml, Mz)-

3. Evaluation of (M)

The problem at hand is to find an explicit expression for (M, B). Considering
(38) suggests introducing

(D(a)=e(-m'u.)||a||2 Q(a ﬂ)= e(zm‘/L)a-E
2 £l

for a, B € #. (Note: this ® has nothing to do with the matrix ® of Section 1).
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PROPOSITION 6.

i) Me, B)=NB, ), P(a + B) = D(a)P(B)Ua, B);

i) Qa;+ a2, B) = Qay, B)Nas, B);

iti) ®(a) and Q(e, B) depend only on « and 8 mod &.
Thus they define functions (still denoted) ® and ) onJ and J X J respectively ;

iv) for each B € J the function a« — Q(a, B) is a character of J, call it xs. The
mapping B — xs is an isomorphism of J onto its character group J.

ProoF. (i) and (ii) are clear. If A € %, |A |’ =0 mod 2L so that ®(A)=1 and
(1/L)A-B=A-(B/L)E Z,since (B/L)E £*, so that Q(A, B) = 1. (i), (ii) then
give ®(a + 1) = P(a) and Q(a + A, B) = Q(a, B) = Q(a, B + A) which is (iii). It is
now clear that y; is a character and B — x, is a homomorphism. As both J and J
are finite groups of order A to show this is an isomorphism it suffices to prove
that if y, is the identity character — i.e., ys(a)=1 for all @ — then =0
mod . But if 8# 0 mod £ then B& &£ = (£*)* so there is some u € £* such
that B-u& Z, or, with a =L, a € ¥ and (1/L)B- &€& Z, hence ys(a)=
Ma, B)# 1.

COROLLARY. Let a, B € J. If the order of a is a and the order of B is b and
¢ =(a, b) then a, B) is a cth root of unity. Furthermore there is some y € J such
that Qa, v) is a primitive ath root of unity — in which case the order of v is a
multiple of a.

This follows from standard results of the character theory of finite abelian
groups.

Again, let B € J have order b so that (B, 8) is a bth root of unity. Then
D(B) = Q(B, B) whence ®(B) is a 2bth root of unity. Now we have the crucial
fact that:

39) If B €7 has odd order b then ®(B) is a bth root of unity.

Proor. ®(B)=exp((mi/L)| B ) so we must show (1/L)||B|F=2w/b for
some integer w. But on the one hand (1/L)|| B |*=(1/b)(bB - (B/L))E (1/b).
£*=(1/b)Z so (1/L)|| B |F = (u/b) for some integer u, while on the other hand
(1/L)||BIP=(1/b*L)|| b8 | = (1/b*L)2Lv for some integer v, since A = bg € £
and | A [P=0mod2L. Thus (1/L)||B|*=u/b=2v/b? u=2v/b and since b is
odd, b|v, u =2w where w = v/b.

A noteworthy corollary is

(40) If B € J has odd order b and (B, B) is a primitive bth root of unity then so is
o(B).
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Returning now to (38) let M, = T* so t(M.,a)=0unless«a =0mod %, a.=1,
b, = u and noting the remark after (28) we obtain

(M T, y)=t(M, y)exp (mi(u/L)| y [) = t(My, y)P*(v)-

In a similar way we deduce ¢(T*M,, y) = t(M,, y) and

(M., 5,7) = (M, )= 3 1M pyexp (- @i 1L)B - )

BEJ

= oM, ) S v )26, ).

It is interesting to observe that this last formula can be understood as a Fourier
transform in the context of finite abelian groups. We digress a bit to discuss the
situation in general.

Let A be a finite abelian group (under addition) of order N. Furthermore
suppose there is on A a function W pairing A with its character group A as our
Q1 above. That is, we assume given W:A X A — C such that W(x,y)=
W(y,x)#0forallx,y € A and foreach y € A, x - W(x, y)is a character of A,
call it x, such that y — y, is an isomorphism of A onto A. Let F = F(A) be the
set of all complex valued functions on A. Clearly F is an N dimensional complex
vector space and can be made into a Hilbert space with the inner product
(f, g) = (1/N)Z,ea f(x)g(x). The norm of f is then ||f|F = (1/N)Z,ea | f(x) [
The character relation (x, x')=(1/N)Z,cax(x )Wx.) =1 or 0 according as
x = x' or x# x' shows that {x }.e4 is an orthonormal basis for F. Every fE F
then has a ‘Fourier expansion’ f = £, ¢,x With ¢, = (f, x). The function f on A
defined by f(x)= \/—}\_f'(f, x) is the Fourier transform of f. The factor VN will
appear to be a convenient normalization. In our case with the above identifica-
tion of A with A via W, f can be considered as a function on A. Then
f(y) = \/I_V(f, X)) = (l/\/—ﬁ) Sceaf(x)W(x, y). The following are easy to prove:
(a) f—»f is an isometry of F, i.e., (ﬁg)= (f, g) for all f, g €F, in particular
1Fli=1fl; (®)if h € Fand|h(x)|=1forall x € A then f— fh is an isometry of
F, (fh,gh)=(f,g) and ||fh ||=]|/f]l; (c) if f is an even function, i.e. f(—x)= f(x)
for all x € A, then so is f

In particular, reverting to our case where A = J, W =1{(), N = A, we see that
the formulas obtained before the above paragraph can be stated in terms of the
t(M)e F(J) as

@41) (T*M) = t(M), t(MT*)= t(M)®*, t(MS)=0v(M,S)—i)'?{(M).
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It is easily verified that t(T*), t(S) are even functions with norm 1/V/A in
F(J), ®* is even, |®“(B)| =1 and | v(M, S)(— i)""?| = 1. Hence our discussion
shows that, considering the t(M) as elements of F(J):

(42) forall M €T, t(M) is an even function and || t (M) || = L
VA
We see that t(M) is computed from the given ¢(T*) and #(S) by successively
multiplying by a function and taking the Fourier transform. Looking again first
at the general case with A, W as before let f, f,,--- be functions in F(A),
Co, C1, - -+ constants and define go=c¢,, g = c,g,/Al\f, for r=1,2,---. Then

r (O ()W (x,
&(y)= \/I—VEAg (O ()W, y).
Inserting the similar expression for g,_;(x) in this sum, continuing this way, we
eventually get an r-fold sum

_C()C]"'C,

(43) gr()’)_ (\/N)'

W(x,y) is like an inner product on A except that its values are in the
multiplicative group of nonzero complex numbers rather than the additive group
of all complex numbers. Nevertheless one can mimic the procedure of choosing
an orthonormal basis. We say x is orthogonal to y (in A, with respect to W) if
W(x,y)=1 and two subsets B, C of A are orthogonal if W(x,y)=1 for all
X € B, y € C. We indicate orthogonality by the usual symbol x Ly, B L C. We
first observe that if the orders of x and y are relatively prime then x L y. From
this it follows that if A = @, ~A® is the decomposition of A as the direct sum
of its p Sylow subgroups then this is an orthogonal decomposition, each A® is
orthogonal to all the others. Each A® is a direct sum of cyclic groups (each
having order a power of p) but these in general are not uniquely determined. If
A = B@® C and the subgroups B and C are orthogonal then W restricted to
B X B is seen to be a pairing of B with its character group B with the same
properties as postulated for W on A. Thus for each prime p we restrict W to
A® and deduce that for each x € A® of order p° there is some y € A® such
that W(x, y) is a primitive p*™ root of unity. Let p** be the maximum of the
orders of the elements of A®. We claim that if p# 2 then for some x € A®,
“™ root of unity. For, choose some y € A® of order p*
and then z € A® such that W(y, z) is a primitive p“™ root of unity. Then the
order of z must also be p*, by the maximum condition on p“ Nowif w =y + z

2 filxy) - fr(xr)W(xly x2) s W(x-1, X, )W(x, y).

X1, X EA

W(x, x) is a primitive p
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we have W(y, z)’= W(w, w)W(y, y)W(z,z). If p#2, W(y,z)*is also a primi-
tive p“™ root of unity while the three numbers on the right side are p“™ roots of
unity, hence for x equal to one of y, z or w, W(x, x) must be a primitive p“*" root
of unity. Now let B={y € A®: W(x,y)=1}, i.e.,, B is the kernel of the
character y.. Then A® is the direct sum of (x), the cyclic group of order p*
generated by x, and B; and this sum is orthogonal, A®’=(x)® B, x L B. Then
restricting W to B we can split off in the same way a cyclic orthogonal direct
summand of maximal order in B. Continuing in this way we obtain finally the
analogue of an orthonormal basis. Explicitly — and to fix notation —

(44) for p#2, AP=(a®"@® - D(a®")

where each cyclic group (a ™ ”) is orthogonal to all the others and W (a®?, a® ")

is a primitive p“" root of unity, where p% is the order of a®”. Furthermore,
eyZe,;Z-=2e,21, h=h, e, = e (p) are invariants of A® and A.

Note that the cyclic groups occurring in (44) are still not necessarily uniquely
determined. Also, the assumption p# 2 was essential in our proof and an easy
example shows the result can failfor p = 2. Take A = Z,® Z,;,s0 A = A®, each
XEA is x=(x;,x2), x;,x,=0 or 1. Define W(x,y)=(—1)"="2" Then
W(x, x) =1 for all x and no orthonormal basis as in (44) exists. Thus p = 2 needs
an individual treatment in any particular case.

Reverting to (43) the r-fold sum can be simplified using an orthogonal
decomposition of A provided some assumption is made on the functions f. In
our applications each f; is of the form ®* (u € Z) on J and we observe that if
Q(a,B)=1 then by Proposition 6(i), ®*(a + B)= ®*(a¢)P*(B). Thus let us
assume that each f is a W-function. A W-function — for lack of a better name
—isan f € F(A)such that f(x + y) = f(x)f(y) whenever x L y. Thus ®* € F(J)
is an Q-function. For each p | N, let N, be the order A, this being the highest
power of p dividing N and N =1II,,yN,. Each x € A has a unique expression as
x =2, 8vx®, x®€ A®. For any W-function f, f(x)=1ILf(x®) and W(x,y)=
I, W(x®,y®) — p always ranging over primes dividing N. Using such a
decomposition for each x; ranging over A in (43) along with the distributive law
we obtain

g(y)=(coci -+ ¢) H g2Ay)

(45)
§7(y) = (\/1]\7?)'

S D) hEO)WE, X)W, y®).
st
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For any p such that A’ has an orthonormal basis as in (44) — which includes all
p#2 — we have N, = H:.';Ip‘i, and each x” € A® has a unique expression

x®=3r x®D x®Pe(a®”). The elements of this cyclic group are ka®”, k
running over a complete set of residues mod p“. Arguing as before we deduce
that if y® =3 k®?a®? then

gP(y)= H g¥(y)
(46)

z fl(k,a(p'i))"'f,(k,a(p'i))

(P I)(y) —
P ) Ky, k,modp%

- ™ . ;
X W kiketo ok ke (a(P~I)’a(P-I))'

We now return to the case A =J, N=A, W=Q. Letr=1, u,,:-,u, €EZ
and set M = M(u,,*++,u,)= ST*S -+ - T*S. There are r powers of T and r + 1
S’s. Let co=(—i)""/VA, ¢ =0v(ST"---ST% S)Y—i)"'? f, by, j=
1,2,---,r, then by (41) go=co=1(S), g1 =cC8of1," " ", & = C:&- lf glves g =
t(M). Let

47) v(ul,---,u,)=l—[ v(ST*---8T",S),

j=1
A=11,sA, A, being the highest power of p dividing A, and for p#2 let
J® = @7;1(01“””) be the orthogonal decomposition for J®’ as in (44) with the
notation used there. By (40) each ®(a*”) is a primitive p " root of unity, say

2w(p,i)
p

(48) g’p_]. = exp (27TIW (P-i)/pti) where _llj” a(PJ)”Z —

Equations (45) and (46), taking into account the nature of co, imply, for
M= M(uy, -, u), BEJ,

H(M, B) = vy, w)(= Y0 [ [ 1M, B)
(49)

t(")(M, B)= (ﬁ)rﬂ Z P (ay)- - - (I)u.(a,)ﬁ(ax, a): - (—),(a,, B<p))

ay "'.a,EJ(P)

and for p#2, t*(M, B)=1I" t* (M, B)

; 1 2 2
t(P")(M, B) = - Z :}k1+---+u,k 22k kye--—2k k(P
(\/PC’)’+1 Kivokomodp
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where B® is the component of B in J® and k®”a® " the component of 8% in
<a(p»i)>_

The sum in the formula for t® (M, B) is like a Gaussian sum but its evaluation
is not immediately obvious. Let m be a positive odd integer, { = e*>™'™ a

primitive mth root of unity, u,-- -, u, k a sequence of integers and define
(50) G(ul, e u, k, {) — z {u,kf'h - ruk2-2k k- —2kk .
ki, k, mod m

The sum in (49) is of this type with m =p%, { = ¢, ;, w=w®"” and k = k®7,
Before giving the evaluation of G we need some more notation. Let B, =1,
B,=u,andforj=2 B; = y;B,_,— B;_;, let d; = (B, m), j =0,1,2, - - and define
B/ by B;B; = d; mod m. This last equation has at least one solution mod m and it
may have more, in any case Bj is any solution, it will not matter. Note that

M(u, - -, u)= (; —;,- ]> for j =1,2,---. This is true for j = 1 and if true for
; _

j =1 then

e ww)={%* "fﬂ‘l:(* * )
M(ul, » U u1+1) (B/'_Bj/1>( 1 0) BIH__BI_ .

In particular (B, B;-,) =1 = (d,, d;-,) always.

THEOREM 2. Let G = G(uy,* "+, U, k, {). With the above notation

G=0ifd X k and if d |k then
1)
wy /w ,
G= (\/E)’VE,(—) (—) N, BB AR
m d,
The symbols (%), (%)

are Jacobi symbols and m, = n(u\, - -, u,m) is a fourth root of unity not
depending on w or k whose value is given below in (52).

Proof. By induction. Take first r =1 and to simplify we momentarily drop
the subscript 1. Consider then

Gk )= 3 o

jmodm

and let d = (u,m). If d = 1 let u'u =1mod m, write uj*—2jk = u(j>—-2u'jk) =
u(j—u'ky—u’'k’ modm and as j goes over a set of residues mod m so does
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j—u'k. Thus G(u, k, {) = G(1,0, {*)¢{ ™. The classical result on the Gaussian
sum is that if z = e*™'™ is a primitive mth root of unity, m odd, then

G(1,0,z)= E 2”7 s W(%)E(m) where e(m)=\/(Tl—)‘""—”’2

j mod m

which is 1 if m =1 (mod4) and i if m =3 (mod4). So

Gk ()= Vr?z(%)n]{‘“"‘z where 7, = <£)e(m).

Say now (u,m)=d > 1. Set u = dus, m = dm,, (uo, mg) =1 and as j mod m take
j=hmy+ f, h modd, fmodm,. Then

G(u, k, {): 2 {u(hmo+f)2_2(hmo+f)k= 2 guﬂ—zﬂc 2 {—2mnkh

hmodd fmod mo hmod d
fmod mg

since um,=0mod m. With z = {"?™* which is a dth root of unity the inner sum
iS £4 moaa 2" which is 0 unless z = 1 where its value is d. But z = 1 if and only if
2mok =0mod m and since m is odd this is exactly when k =0modd. Thus
Guk,)=0 if drk while if djk let k=dko so G(uk,{)=
d 2 fmoa mo L7 = dG (o, ko, £*). ¢ is a primitive moth toot of unity and
(40, mo) =1 so by our initial result

— w 2
dG (uo, ko, %) = d Vg (7{) L4y
0
where wujuo=1modm, and m,= <%) e(my).
0

Now dVme=dVm/d=Vm\Vd and (¢%)“* =24 ywhere u'u=

d mod m. Also
()= (57a) = ()
mo m/d m/\d/’
a fact about the Jacobi symbol that we shall frequently use. We see now that (51)
is true for r =1 and

=t~ ()= (442)(2),

Suppose now that the theorem is true for positive integers =r where r is a
positive integer and that furthermore
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52) n=ny, - u,m)= H(m]/(ld/ld:dl)ﬂmﬁd{dld)) (,Td)

this coinciding with the result obtained for n, above. Consider

G(ula”', U, u,+1,k,§)= 2 {u’HiZ—ZikG(uls”'a ur,];{)-

jmod m

By the induction hypothesis the inner sum is 0 unless j =0 mod d, whereupon
writing j = d.h, h mod m /d, we obtain

Guy, Uy tyar, k, ) = (W)r \/E(%) (g) n 2 ({d,)u,q-xd,"z—zhk—ﬂ,_lB"hZ

hmod(m /d,)
= CG(tnd, — B,-\B, k, {*)

where C is the product of the terms to the left of the summation. Let
U=u.d —B,_ B, z={% so by our initial result for r =1 G(U,k,z) is 0
unless d = (U, m /d,) divides k where

G(U k z)= VTM\/H(%) (g) n(U, m | d,) (L") 20 e
Here

U'U=dmodm/d, and n(U,m/d,)z( l/](iidd)) (d£>

Now by definition BB, /d,)=1mod m /d, so
U=BYB./d)U =B'B,u,.,— B,_;B,mod m/d, = B!B,.,

by definition of B,.,=u,,B,— B,_;. Then d =(U,m/d,)=(B.B.si,,m/d,)=
(B.+1, m [ d,) (since (B}, m/d,)=1)= (B,.,, m) (since (B,.;,d,)=1)=d,.,. Thus
we have U=B'B,., ,modm /d, d =d,., so

U/d=B'B.../d,..mod m/(dd,..),

( U/d )=< B; )( B,+1/d,+1> and ( B, ):( B, /d )
m /(drd) m /(drdr+1) m /(drdr+]) m /(drdH»l) m /(drdr+l)
since BB, /d, =1modm/d, a fortiori mod m /(d.d,..). Finally U’ is a number
satisfying U'U /d,.,=1mod m /(d.d,.,) but

(B I(B /d ))U/d'+l B’r+l(Br /dI)B’r(Br+l/dr+1) =1modm /(drdr+1)
so one can take U'=B..«B./d,)modm/(dd.) and then dd, . U =
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d,.:B,B ., mod m. Putting these values into the above formula for G (U, k, z) and
noting the value of C the proof is finished.

The proof also shows that (52) is indeed the correct formula for 7,. Let us try
to simplify it. Employing the appropriate multiplicativity of the Jacobi symbol in
both numerator and denominator the first factor in the jth term of (52) can be
expressed as

(wia-an) = Cera ) (™) = Gara) () (9)

and a similar result holds for the second factor. Regrouping,

o 1A (B 5 B4 ) 2

j=1 m /d,'-] m /d] dj d,'/1 dj d]‘/1 dj—ldj

We see that each term ((B;_,/d;-,)/(m/d;.,)) will occur twice, once in the
(j — st and then in the jth term of the product, hence gives (= 1)*= 1, except
for ((Bo/do)/(m /do)) which occurs only in the first term, but has the value

(1/m)=1 anyway, and the term ((B, /d.)/(m /d.)) which occurs only in the rth
term. Also for j =2, B; = y;B;_,— B,.,= — B;_.mod d,_, so that

B, -1\/B._, ‘
= = e
<d]‘71> (di—l )( di*l ) for ] 2, y r,

and this is true for j =1 also if we set (B_,/d,)=1. Thus

v=(wra) 103 () (@) (6 (@) (3%a)
-(a) (22 @9 (@) (3%)

By quadratic reciprocity
<—_1> ( éu) ( _dL) -
dj d,‘ di‘l

except if d;-, =1(mod4) and d; =3 (mod4) when it is —1. Also ¢ (m /d;-.d;) =
e(m) if d,_,d; =1(mod4) and = ¢(—m) if d;-1d; =3 (mod 4). Hence

1) () () o) -

(Z)() (G5 e(3% ) = =
if d_1=d, (mod4), =e(—m) if d_,=3, d=1(mod4) and = —e(—m) if
“di-y=1, d;=3(mod4). Thus
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53) m = (B48) (=22) e myve (= m)r (= (= m)y

where a is the number of j, 1 = j = r, such that d;_, = d; (mod 4), b the number of
j such that d,_,=3, d; =1(mod4) and ¢ is the number of j where d;_,=1,
d,=3(mod4). Clearly a+b+c=r.

In our applications we shall have m a power of an odd prime. Assuming this
so, since (d;-1,d;}=1 and d;_,, d; divide m one of d;_,, d; is always 1, so if for
some j, d; =3 (mod4) then d;_, = d;,, =1 (mod 4). Let j,, - - -, j. be those indices j
in 1,---,r where d, =3(mod4); then j,+1<j, j,+1<j; -, ¢ thus having the
same meaning as in the previous paragraph. The corresponding b indices are
h+1,j+1,--- j+1, and also j. +1if . <r ie, b=c—1if d =3(mod4)
and b=c if d, =1(mod4), a=r—b—c is r—2c+1, r—2c, respectively. A
little calculation yields e(m)*e(—m)*(—&e(—=m)) =e(m)*'/e(dm) in all
cases. Thus for m = p*, p#2,

_ B,/d,)( - B,_1> e(m)™"!
(54) " (m /d )\ d /e(dm)

After this diversion let us return to the modular group and the notation of (48)
and (49). Note that every element of I' has an expression as some M (uy, -+, &,).

For example, E = M(0,0,0), S = M(0,0,0,0), T* = M(0, u,0) and
M@, - u)Mui, - uy =M@y, -, u,0,ul, -+, uy).

ab

Given now M=<
cd

)EF fix a representation M =M(u;, -, u)=

(;3 _; ) so B, =c¢, —B,_;=d. Applying Theorem 2 and (54) to the last
r r—1
equation of (49) with m = p*% (p# 2) and setting ¢®” = (B, p%) = (¢, p%) in place

of d,, we deduce:

t(p‘j)(M,ﬁ)=0 if C("‘i)* k(p'i)

and
[ AN N D)) @9
@), =./C w w cle d
(55) t? (M, B)= P . @7 s o@D |\ ZED
p% \ p ¢ pilc ¢
e(pi)™! P Ddc (kB D@Dy

€ (C(‘” i)pe,) (3]

if C(P")I k(p,i).

Here ¢’ satisfies ¢’c =c¢®”mod p*.
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Define T'(£L)={M:t(M,B)=0 for all B#0mod £}. Define the function
x = xe on I['(£) by xe(M)=t(M,0). Since || t(M)||=1/VA it is clear that
| x(M)|= 1. Note that T* €T(¥) and x(T*)=1. (38) with M, = M € T(£) and
M, = M"" shows that M ' € I'(¥) also. Furthermore if M,, M, ET(¥), M|\M, €
I'(£) also and y (M\M,) = v(M,, M>)x (M) x (M).Thus I'(£) is a subgroup of T’
and y is almost a character of I'(£) except for the factor v(M;, M,)= =1.If n is
even then v(M,, M,) =1 always and in this case y is a character of I'(£). (38)
shows in general that if M'= MM, M, € ['(¥), then

(56) t(M") = v (Mo, M)x (Mo)t(M).

If £ has A odd — we have remarked in (5) that n is then even — we can
identify I'(#) and the character ye.

THEOREM 3. Suppose the even lattice £ has A odd and n even. Set A,=
I, ap®, the least positive integer such that A, § C&L. Then I'(¥) is

Fo(A1)={M= (215) c= modAl}

and xe is the character of T'o(A,) given by x=(M) = (d/A).

Proor. It is clear that A, has the stated property as p* is the maximum of the
orders of elements of J® and J =@, sJ®. Note that A,|A, uses the same

ab
cd

¢ =0mod p* for all p and j and (55) shows that t®”(M, 8) =0 unless k®” =
Omod p%. By (49), t(M,B)=(—i)"'?*M1,,;t® (M, B) is then 0 unless the
component B®” of B in the cyclic group {a®?”) is 0 for all p, j, i.e., t(M, 8) =0
unless B =0 in J. This shows ['((A,) CI'(£). On the other hand, if M& I'(A,)
then for some p,c#Omodp®, ¢®?|p' and the element B=
p'a® #0mod £. But clearly by (49) and (55) t(M, B) # 0 so MZ I'(¥). Thus
I'(£)=TA,). Now returning to M € I'y(A;) let us compute y(M)=t(M,0)=
(= i)™+ VIL, LT, t%7(M,0). By (55), since now ¢®” = p*,

(P i)y r+t
om0 = (-5) (%) e oy

primes as A and A, = A if and only if J is cyclic. Say M = ( )E [o(A,); then

p‘i p
Define
h ) h
s w=w@)=T (%) e =e =TT 0"
plaj=i \ P pla j=i

It is not immediately apparent that W is an invariant of £ since it depends on
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the orthogonal basis chosen in each J® but we shall express W in terms of ¢
which is clearly an invariant of £ which shows W is also. We have now that

d s\n r+
x(M)=(§) (= iy wey™
and the proof will be complete if we show that
(58) (—i)"*We =1,
the promised fundamental relation between W, ¢ and n. Consider the element
M= — E =ST’S = M(0)ET(A,) so that our above formulas give
— -1 S\ /2 2 -1 S\n 2
X(mE)={—5 J(=)"" We) ={—=)(—i)e
since W = =1, W?=1. On the other hand for any function f(7),
fl-e=(=1)"f
nf2

by definition of the stroke operator. Thus e [g]]- = (= 1)"* ¢ [5], but
Ye [0] |- = x(— E)¢ [5] by Theorem 1’ and the definition of x (— E) = t(— E, 0).
So we have y(— E)=(—1)""* which upon comparison with the previous
expression for y(— E) gives

(59) (;Al>52=1.

-1 1

Next consider M = ( 0 -1

) = STSTS = M(1,1) E To(A,). Then

x(M)= <‘_Z1‘>((— )P WeY=(—i) "' We,

where we have made use of (59). But M =(—E)T"' so that y(M)=
x(=EX(T)=x(-E)=(-1)"".
Comparing the two values for y (M) gives (58) and the proof is finished.

CoRroOLLARY. The following table relates n,A, W and ¢:

n mod 8 A mod 4 w

0 1 £

(60) 2 3 —ie
4 1 —€

6 3 ie




174 J. LEWITTES Israel J. Math.

Proor. Since W= W™= =1 (58) shows W =(—i)"'>¢ which is the last
column. Squaring, 1= W?=(—=1)""?¢? and (59) show (—1)"?=(-1/A)=
(— 1)®™V”* which is the middle column.

Note that ¢ = i" where H is the number of cyclic summands of J of order p*
with p =3mod 4 and e odd. W has a much more complicated definition and the
above relation between them was unexpected. The character ye is identically
one only in case A is a square.

Keeping from now on £ as in Theorem 3, Theorem 1’ yields: if M =

(: 5) € I's(A,), then for every x,y € M and admissible sequence s,

- ; d (s)[ ax + Lcy ]
M—CXP(WW(X,)’,M(L))(A) ¥ (/L) +dy |’

For any M €T we can compute ¢(M) via (56) if it has been computed for a set of
coset representatives of the right cosets of I'mod I'e(A,). It can be shown that
these may be chosen of the form E, ST* and ST*ST’ for suitable integers k and
j. By (41) and (S, B) = (—i)"’>/ VA we have 1(ST*)=((—i)*'*/VA)®* and
t(ST*ST') = t(ST*S)®' so one has only to compute 1(ST*S) which can be done
using (49) and (55). It is precisely in this computation that something must be
known about the w®?, However, if A, = p this situation does not arise and the
calculations simplify. A, = p if and only if A = p" and J is a direct sum of cyclic
groups each of order p, i.e., J is an elementary abelian p group. It is easy to see
that [T:To(p)] =p + 1 and T = To(p) U (U« To(p)ST*), k going over a complete

(61) yo [;‘]

set of residues mod p. In fact, if M = (: 3)& I'o(p) then M = M,ST* where

_f(ak—b a
M, = <ck -d ¢
1mod p. x(Mo)=(c/A) and (56) shows

)e To(p) where k satisfies ck = d mod p, i.e., k =c*d, c*c =

t(M, B) = (c/A)(ST*, B) = (c /A)(— i)™/ VA)D*(B).

Thus if A =p*, A, = p then for every M = (? 5) with ¢# 0 mod p,

ve [: ] ‘ M= exp (miv(x, y, M(L))(§> g_—\/l—AL/z

(62)

mic*d, ) o ax+LC)7+B]
XB%‘”“’( L “B"> (Y)[(b/L)f+dy :
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Equation (61) shows that ¢$'[;] (7) is in general not a modular form for I'y(A,)
since besides the multiplier the transformed function has a new characteristic. If
certain algebraic congitions are put on x and y one does obtain modular forms
for some subgroup of I's(A:).

Suppose m is a positive integer and [;] a characteristic with x € (1/m)g,
y €E(1/m)¥*. Since § = L¥* one has (1/L)f € (1/m)¥* and Ly € (1/m)$.

Then for any (g 5) €1 and B € # the characteristic

[X]: [ax+LC)7+B]
Y (b/L)x + dy

has X €(1/m)%, Y € (1/m)¥*. Define F*Y(¥, m) as the space of functions f(r)
spanned by all complex linear combinations of ¢ [;](r) with x €(1/m)g,
yE(/m)¥*, (s) a fixed admissible sequence. By Theorem 1', our above
remarks and Proposition 4(i), it follows that F®(%, m) is a finite dimensional,
complex vector space and f— f|w is an automorphism of F*)(¥, m) for each
M €T, giving a representation of I' by nonsingular linear transformations of
F®(%, m). Actually one obtains only a finite group of linear tranformations as
there is a subgroup of finite index, say G, such that f|y = f for all M € G. Thus
the f € F¥)(¥, m) are all modular forms of weight (n/2)+ [ for G. Determina-
tion of the group G depends on algebraic properties of ¥ and m but we can
make a general summary as follows:

THEOREM 4. Let £, A, n, A, be as in Theorem 3 and F®(¥, m) as defined
above. Assigning to M €T the linear transformation f — f |y of F*(&, m) gives a
representation of I' by a finite group of linear transformations. The kernel of the
representation G“(&, m) is a normal subgroup of finite index in T. All
f € F(%, m) are modular forms of weight (n/2)+ 1 for G(¥, m):

flu=f MEGL m).

The group G®(&, m) contains the principal congruence subgroup

F(mZA,)={<Z 5)5((1) (I))modmzAl}.

Proor. Clearly the kernel of the representation is a normal subgroup and
everything follows if we show that G (£, m) contains I'(m?®A,) since this latter
‘ 5 )e To(A)) we have (61), »(x, y, Mg))

as in (37), x =(1/m)¢ and y = (1/Lm)7n with £ 7 € £. By (39),

group has finite index. Now for M = (
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i i
exp(FEr), exp(FnF)
are Ath roots of unity whence

t=exp(TxlP) and & =exp(rilly P

are m’A,th roots of unity. Since A,¢ - (R/LYE L -¥*=2Z, [, = e*™ 7 is also
an m’Ath root of unity. Then

em‘v(x,y,M(L))= {;ab {;cdg;‘byc

is an m?A,th root of unity. The transformed characteristic in (61) may be written
as

[ x+(a—-1)x+cLy ]=[x+u]
y+(b/L)E+(d -1y y+v]’
say.Ifa-1=c=0modmA,andb=d -1=0modm then up € %, v € £* and
Proposition 4(i) gives

o Xt — p2mix-v (;)[x]
""*’[y+v] ey

| x
-eretioy| )

Note that our congruence condition along with ad —bc =1 implies d =
1mod mA,. Let then G(A,,m) be all those M satisfying a—1=d-1=c=
OmodmA, and b=0modm. Clearly G(A,,m) is a subgroup of I' and is
contained in T'y(A,) NT'(m). For all M € G(A,, m) we have now:

(5]

Since A, and A have the same prime divisors d =1 mod m A, implies d = 1 mod p
for each p|A whence (d/p)=1, (d/A)=1. As 2Q—a)b=b+(1—-a)b=
b mod m*A,, c¢d = ¢ +(d ~ 1)c = c mod m*A,, bc =0mod m>A, and all the {’s
are m*Ath roots of unity, the above equation becomes:

= (&) eeirtag X

(63) 2|3 -ecraree|l] Meow.m.

If now b=c=d—1=0mod m?A, all the powers of the {’s are 1. Thus for all
M eT(m?A,), &[] Im = ¢2[5], as asserted.
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4. Examples

Let K be an algebraic number field of degree n over the rational field Q. An
isomorphism o of K/Q into C/Q is called real if o(K)CR and otherwise
complex. If o is complex then & given by o(a) = m, a € K, is an isomorph-
ism distinct from o. It follows — as K has n distinct isomorphisms — that these
can be arranged as o4, * - -, 0. with oy, - - -, o, real and the remaining 2r, complex
with 0,ernek = G, 1=k = r,. 1, r» are nonnegative integers and r, +2r, = n.
The map o: K— M = M™" given by

oa)

o(a)=

o (a)

is a one-one map linear over Q. For this and further points of number theory
quoted in the sequel we refer to Borevich and Shafarevich [1], especially
chapters 2, 3 and 5. According to their terminology a full module in K is a
finitely generated subgroup of the additive group of K which contains a basis of
K. Equivalently a full module in K is a subgroup of the additive group of K
which is a free abelian group of rank n. If A is a full module in K with basis
o, -, a, then o(A)is a lattice in # with basic matrix A = (o(a1),* -, o (aw)).
The discriminant D(o(A))= (det Ay = det' AA = det (o (a;)  o(a;)) = D(A),
the discriminant of A. Observe that for o,BEK, o(a) o(B)=
Ziioi(a)o;(B)=2!-1 0;(aB) = tr (a8) where tr is the trace of K /Q. In particu-
lar, o(a)- oc(B)E Q for o, B € K and o (a) - o(B) € Z for a, B € Ik, the ring of
algebraic integers in K.

For our purposes we seek fields K where a(a)-?ﬁ)é Q for ,BEK
Unfortunately o(a)- ?r—(—B‘) need not be rational, for TB) = ¢(B) is not true in
general. For exampleif o = V2>0, 0 = ¢, K = Q(a)hasn =3, r,=r,= 1,

ola)= (-(i)a)

but o(a) # o(&). Also || o(a)|F = o(a)- o () = 3 is irrational. There are two
cases where o(a) = a(a) is true. First, if K is totally real, i.e., »=0, n =r,, in
which case o (a) = o(a)= o(a) as all quantities are real. Second, suppose K, is
a totally real field of degree n, and u € K, is totally negative: o (u)<0,
j=1,2,++, no, the o being the isomorphisms of K,. Then K = Ko(Vp) is a
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totally complex field of degree n =2n,, r, =0, r, = no and o(a)=o(a)holds in
K. Verification of this is left to the reader. A normal extension K of Q with
{1, ¢}, ¢ complex conjugation, a normal subgroup of the Galois group of K is of
this type for then o;(a) = o;(ca) = coj(a) = m for every automorphism o; of
K. In particular every cyclotomic or quadratic field falls into these categories.

Let now K satisfy o(@)=o(a) for all a EK. Then o(a) -o(B)=
o(a) o(B)=tr(eB)EQ for all ¢, BEK and o(a)-o(B)E Z for a, B € k.
Thus for any full module A Clx, £ =0(A) is an even or odd lattice in #
according as tr (aa) is an even integer for all « € A or not. In the complex case
o(Ix) itself is even for tr(aa) = 2trg,, o{aa) where K, = K N R, whence every
o(A) is an even lattice. In any case, if £ = o (A) is even, by the results of
Section 1, |D(&£)|=L"A where L =g.c.d.{}tr(a@d), a EA} and A=
[L#*: £1=[LA*: A], A* being the complementary module (with respect to
the trace) of A. Determination of the number L in general appears to lead to
some deep questions of number theory. For applications of our theory we are
particularly interested in the case where A is odd. If L is unknown this can be
achieved by requiring D(A)= D(&£)=(—1)2L"A to be odd. Since D(A)=
[I«: A)’Dy, where D, = D(Ix) is the discriminant of K, D(A) will be odd
exactly when Dy is odd and A has odd index in Ix. Recall also that A odd
requires n even. Suppose K is totally real, A a full module in Ix such that D(A)
is odd and o (A) is an even lattice. Then D(A)=|D(A)| = L"A=Amod 4. But
by Stickelberger’s theorem of number theory, the discriminant of a full module
of algebraic integers is =0 or 1 mod 4, here then D(A)=1mod4 by (60),
A =1mod4 implies n =0mod4. Put another way, if K is totally real field of
degree n =2mod 4 and A is a full module in Iy with D(A) odd then o(A)is an
odd lattice, i.e., there is some a € A such that tr(a?) is odd.

In somewhat greater detail consider the field K = Q({), { a primitive pth root
of unity, p an odd prime. The degree of Kisn=p—-1,r,=0,r,=(p—1)/2 and
the discriminant D = (— 1)®""?p?7, & = g (I) is an even lattice in M = M*".
L = L(¥)=1 here, since by Proposition 3(i), for any A, u € £, A - g =0mod L
butforA =0({),u =0(),A-i=tr{=—1.Then A=|D(¥)|=|Dx|=p*?
is odd and is the order of the group # mod %, § = #*. Here though ¥ = o (Ik) =
o(x)=2% and £* =0} =0(3%") where dx is the different of K. Thus
F = o(3%'). With (a) denoting the principal ideal in K generated by the element
a, it is known that (1—{¢) is a prime ideal and (p)=(1—¢)?™" is the prime
factorization of p in K. Since Nox = | Dk | (Ndk is the norm of the ideal dx) and
N -{¢)="p, we must have dx =(1—-¢)F 2, ' =((1-0)/p)=((1- )/ p)lk. It
follows that for all @ € d%', pa € Ix. So %'/ I« is an elementary abelian p-group,
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a direct product of p —2 cyclic groups each of order p. Here then A =p",
h=p-2, Ai=p, e=e(py =1 or i according as p=1 or p=3mod4,
I'(£)=Tu(p) and the character y- is x«(d)=(d/A)=(d/p), the Legendre
symbol. Now by (60) we see that W =1if p=1or3mod8and W= —-1ifp=5
or 7mod 8. By Theorem (3) and (62) we now know how the functions ¢¥’[;](7)
transform under any M €I'. One might now consider £ = o(A) for any full
module A in Ix and also more general cyclotomic K but we do not pursue this
topic any further here.

Finally, we look more closely at an imaginary quadratic field K. Again we
mention that our basic reference for this is [1, chap. 2]. Let I = Ix be the ring of
algebraic integers in K and D = D(I) = Dk the discriminant of K. For K we
have n =2, r, =0, r,= 1 and the embedding o of K into # = M* " is given by

a—o(a)= (g>, U(a)'mztﬁc/o (aB)

and || o (@) |’ = trk,o(la@) = 2Nk, o(a). In this special case we see that the map o
does not really depend on K, that is, it extends to a map o: C — M*', by

o(a)= (g) for all @ € C, coinciding with o(a) as above for a € K. Further-

more, for a, B € C,

o(a)-o(B)=aff +aB = 2Re(aff) = trcix (af)

and || o(a)|f=2| a ' =2Nc,r(a). From now on we let tr stand for trc,x and N
for N¢/r, so tr restricted to K is trg,o and similarly for N. Every full module A
of K has a coefficient ring R = {x € K: xA C A }. This coefficient ring is both a
ring and a full module, such an object is called an order in K. Every order in any
field is contained in the ring of algebraic integers, this being the maximal order.
In a quadratic field K the order is determined by its index in the maximal order
I: for each integer g =1 there is a unique order R, of index g in I Let
D, = D(R,)=g’D. A full module A with coefficient ring R, and which is
contained in R, will be referred to simply as an R, ideal. The reader not used to
these notions can take A simply as an integral ideal of K,i.e.,g =1.1f A isan R,
ideal the index [R,: A] is called the norm of A, NA.

THEOREM 5. Let A be an R, ideal, £ = o(A) the corresponding even lattice in
ML =L(¥),A=A(F). Then L =NA,A=|D,|, §=L%*=0((1/VDy)A)
and J = § | £ is (isomorphic to via o) (1 /\/_IZ)A [ A. A isodd if and only if g and
D are odd. If A is odd and (L, D,)=1 then Jis cyclic, A, = A, T'(¥)=Tu(g*| D |)
and the character x+ coincides essentially with character of the field K: y«(M) =
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(d/| D |). The invariants W, ¢ of & then are ¢ = i™ where H is the number of prime
factors of D which are =3mod4, W = — i¢ and furthermore (NA/|D|)=1.

Proor. It is known that for a, 8 € A, NA divides each of the numbers
Na, N§ and traB. As L is the greatest common divisor of the numbers
slo(@)|f = Na, @ € A, one has NA | L. On the other hand if a,, a; is a basis for
A (as a free abelian group) — which we denote by A =][a;, ;] — the
fundamental correspondence between full modules and binary forms states that
N(xia: + x,a;) = (Na)x i + (tr a:@:)x:1x, + (Nay)x3 has NA as the g.c.d. of its
coefficients. But each of these coefficients is divisible by L so L | NA. Thus
L = NA.Now D(A)=(NA)’D, while also D(A)= D(¥)= — L?A by Proposi-
tion 3, thus A=|D,|. With A =[a,, @], a basic matrix for & is

a 04
A=(o(@), oa=(2 );
A*="A"'is then basic for £* and LA* is basic for L#* = g(LA*). § = detA
satisfies 6= D(A)= L?D, and without loss of generality we can assume
8 = LV D,, since otherwise § = — LV D, and we can then interchange a, and
a;. A calculation then gives

Xk — Q> [+ 4]
LAT= ("(\/3) 0(\/_1)_))
which shows LA * = (1/VD,)A. Since A =| D, | = g*| D | clearly A is odd if and
only if g and D are odd. If D is odd D is square free, D =1mod4,
A=|D|=3mod4. Assuming this to be the case it follows that I =[1, w],
w=(1+VD)/2 and R, =[1, gw].

Since L = NA =[R,: A], for every x €R,, Lx € A which with x =1 gives
L € A. To show (1/\/b—g)A /A is cyclic it suffices to show that for k € Z,
(kL /V'Dg)€ A only if k =0mod| D, | since A =| D, | is the order of the group.
Say then (kL/\/Bg)= a € A. Since A CR,, « has a unique expression as
a=a+bgw, a,bEZ or kL= aVD,=(a + bgw)VD, = (a + (bg/2))VD,
+(bD,/2). Then a +(bg /2)=0, kL = bD, /2. Since g is odd, b must be even,
kL = (b/2)D,. With the extra assumption (L, D,)=1 this implies D, |k as
required. '

With J cyclic, A, = A and Theorem 3 gives I'(£) = T'o(A) = I'y(g?| D |) and the

character
X« (M) = (f) - <g21dD l) - (%)
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Since the J® for different p are mutually orthogonal (in the sense of Section 3)
and each J® is cyclic an orthogonal basis of J is {a®}, p, where a® is a
generator of J®. We write here a® instead of the more correct o(a®), taking
the identification by o for granted. Thus a® here is the a®" of (48), the
corresponding w® is defined by (1/L)2Na® =2w®/p* where p° = p is the
order of J®. We can take «® = (L/V'D,)(D,/p°), w® = L| D, |/ p*. By Defini-
tion (57)

w= 11 (%) ¢=J] o).

pllDg! plIDg|

If the highest power of p dividing g isp“ thene =2a ifp ¥ D and e =2a +1if
p | D. So in the products for W and ¢ the only primes which can yield a factor
different from 1 are the p | D and for these

(W(,P))= <w(‘”)
and £(p°)= e(p). Thus ’ !

W= I )= L) = () I (5):

L
p |D p

This last product is clearly

H H (-q-), q prime,
pIDqID \PD

- (g) <g> (5)

taken over all two element sets {p,q} with pq|D. By quadratic reciprocity
(q/p)p/q)=1 except if p=q =3mod4 where it is — 1. Thus the product is
(— 1Y where j is the number of two element sets {p, g } with p = ¢ =3 mod 4 and
pq|D. If H is the number of prime factors of D that are =3mod4 then

ji= <§I) = H(H - 1)/2. Thus W =(L/|D|)—1)"*"Y2 On the other hand

e =1i" and since |D|=3mod4, H is odd, so & =ii" "= (-1)*"?2; and
W=(L/|D)(—1)* ™™ By (60) W= —ie gives W=(—1)*" and so
(NA/|D|)=(L/|D|)=1. This completes the proof.

We note that (NA /| D )= 1 immediately gives part of the theory as to how
rational primes factor in K (with negative odd discriminant). Say P is a prime
ideal of K dividing the rational prime (p). If P# (p) general considerations show
NP =psoifp & D,(p/|D|)=(NP/|D|)=1 by the last result of the theorem.
Thusif (p/| D |)= — 1 (p) remains prime in K. We do not pursue this any further
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here as the question as to how a rational prime factors in K has a full classical
answer. We mention it only to indicate that our development leads naturally to
the correct circle of ideas and perhaps it is not unreasonable to expect that
application of these concepts to other fields will yield new results.

With A an R, ideal, = 0(A) and L = NA the associated functions in the
notation of Sections 2 and 3 are ¢$[}](r) with x,y € M, (s) an admissible
sequence. Every vector in # we have seen is o(x) = (;) with x € C and an
admissible sequence is either empty or (1,---;1) or (2, - -, 2) of arbitrary length
I It is convenient here to designate these sequences as (1,1) and (2,1)
respectively and write ¢$’[;] for ¢$a,[2G]]. We have then for x,y € C:

X _ 2ami tr (@ +x )y +2mi(s /L)N(a +x)
l/’A[ ](7)_ 2 e
y

a€A

l//g") [ ; ]('T) — (277_1)1 2 (a + x)leZm' tr{a+x)y+2mi(v/L)N(a+x)
A

a

(/j(j,l) [ ; ](T) - (27”-)1 z (& + x—)leZm' tr(@+x)y +2mitr/L)Na+x)
aEA

In case g and D are odd, (L,g’D)=1; the above theorem and the previous

theory give the complete transformation properties of these functions under I'.

Corresponding to the situation of Theorem 4, F*®(A, m) would then be linear

combinations of the functions ¢ [;](7) with o(x)E (1/m)g, o(y) E(1/ m)ZL*,

x€E(1/(mVDY)A, y € (1/(mLVD,)A. The group G(A,, m) of that section is

G(| D, |, m) consisting of all M = (g 5) witha—-1=d-1=c=0modm|D,|
and b =0mod m. For M € G(| D, |, m) (63) gives
®| X _ ,2mi((b/L)Nx—cLNy+(d—1)tr xy) | (s) x]
Vi [)’ ] M ¢ va [Y '

The nature of this root of unity depends on m and K, as will be evident by the
following considerations. For example, say p is a prime and ¢ € K satisfies
pé €I and has an ideal factorization (£) = B/(p), B an integral ideal. If (p) is
prime in K and é€1 then B and (p) are relatively prime, N¢ = NB/p?,
(NB,p)=1 so N¢ actually has denominator p> If (p) is not prime (p)= PP,
NP =p so £ €(1/p)I with factorization (£)=(B/P), (NB,p)=1 has N¢ =
NB /p with denominator p.

Returning to the above functions with x € (1/(m \/Bg))A and setting y =0
(61) gives for M €T'(| D, |),
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| * _ ,—2mi(ab/L)Nx i) ®| ax

""‘[0] ¢ (|D| VR g

—X
Ifb=0modm, (/L)% €(1/(LVD,)A = A*so using again Proposition 4(i),

L
@| X _ ,2miab/L)Nx __d__) (s)[ax]
‘l"‘[O]M ¢ (IDI vl 0 |-

b
Mg, =

M

Then

a =
m
d
and every element of this group may be written this way. It follows that if we

consider instead the functions ¢%[5](7) = ¢[5](m7) — as in the transition

EFo(mIDg |)

from Theorem 1 to 1’ — these satisfy for
a b _ (,)[X] _ zm(mab/L)Nx<_fl_) (,)[X]
(C d) MET(m|D,]) ¢4 0]l € D] ¢alo |

One sees with some change of notation that it is this class of functions from
imaginary quadratic K considered by Hecke [3], see §3, (11) and §4 Satz 7 of that
paper. However he studies only the case g =1, so that A is an integral ideal of
K. It is fitting that we end with this reference to Hecke as it was the attempt to
understand this work of his that gave us the impetus and inspiration for this

paper.
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