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CONSTRUCTION OF MODULAR FORMS 

BY 

JOSEPH LEWITFES* 

A B S T R A C T  

Modular forms arising from lattices are constructed and their transformation 
properties under the full modular group are obtained in explicit form suitable 
for calculation. The forms are obtained via specialization of the several variable 
theta function. 

Introduction 

Theta  series associated with positive integral quadratic forms have a long 

history. Among  the classical papers concerned with this topic we cite Hurwitz 

[4], Hecke  [3] and Schoeneberg [7]. In these and others one obtains a function f 

of the complex variable 7 in the upper  half plane and studies its behavior  under  

the mappings ~--+ ~-+ 1 and T--->-1/~- which generate  the modular  group I'. 

One then deduces that f is a modular  form for a suitable subgroup G of F. 

However  there seems to be no systematic investigation as to how f transforms 

under a general e lement  of F. Knowledge of this type is indispensable though 

when one wishes to obtain the appropriate  expansions at all the cusps of G. Our  

attitude here is to be as explicit as possible in all constructions so that in any 

given case calculations should actually be feasible. 

The functions that we consider are a generalization of those of Hecke and 

Schoeneberg but we approach them via specialization of the theta function of 

several variables. Use of the 'characteristic '  notation of this function is amenable  

to our purposes. Also the methods developed here may be found useful in the 

study of modular  functions of several variables. Rather  than working with a 

quadratic form we start with a lattice in R"  and certain related spaces. This 

appears  to be a natural point of view and allows for greater  flexibility and 

generality. 

By way of illustration of what is to be discussed, let ~ be a lattice in R"  such 

that {{)t I{ 2 ( =  A. A, usual norm and inner-product)  is an even integer for every 
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A E ~.  Define the integer L = g.c.d.{(1/2)ll A II~: A ~ .~) and with x, y E R" and 

r as above, set 

Then we obtain the transformation formula for M =  ( a d b ) E F ,  

I x ]  (M(~')) fax+ Lcy +/31 
qS(crY+ d) n': : e~'v'x'Y'M'L~,~j~ t(M'/3)qsset bx/L + d y  ] ( r ) .  

Here u(x,y,M,L,)= - ( a b / L ) l  Ixll 2 - L c d l [ y I l  2-2bcx'y and J is the finite 

abelian group L~*/~, SE* the dual lattice of ~ . /3  E J means/3 ranges over a set 

of coset representatives of L ~ *  mod LP. The coefficients t(M, ~) depend on M, 

and/3  rood LP but not x, y or r. Considering/3 ~ t(M, f3) as a complex valued 

function t(M) on the group J we find that the t(M) all have the same norm, as 

elements of the finite dimensional Hilbert space of functions on J, and that 

t(MS),s=(O 1 0 1 ) ,  is up to an eighth root of unity the Fourier transform of 

(10 t(M). The t(M) are known initially only for S and T = 1 ' generators of F, 

but by iteration we obtain them for all M ~ F. The final result involves the group 

structure of J and we get explicit formulas at least for the case where 4, the 

order  of J, is odd. To get these formulas we must evaluate a Gauss-like sum 

E ~u,k~ . . . . . .  rk2-2k,k 2 . . . . .  2k,k ; 
k I �9 " " " ,  k r  r o o d  rn  

here ~" is a primitive ruth root of unity, m odd, r->-I and u l , ' - ' ,  u,, k are 

arbitrary integers. 

In Section I we discuss lattices and introduce the class of lattices which are our  

main concern. 

Section 2 introduces the theta function and develops the transformation 

theory as needed. At the end of this section we reach our first main theorem. The 

coefficients t(M) are investigated systematically in Section 3. Along the way we 

discover two invariants W -- • 1 and ~, a fourth root of unity, of our lattices and 

the relation between them is found. It will be evident throughout that the 

number 2 plays a special role and our results are complete only in case/ t  is odd. 

An analysis of the even A is left to the future but the general picture should be 
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the same. Finally in Section 4 we give examples arising from number fields, 

particular attention being given to the imaginary quadratic fields. 

We must admit that our treatment is incomplete in that the functions we study 

have not been integrated into the framework of the general theory of modular 

forms. Presentations of this theory from various viewpoints are given in the 

books of Eichler [2], Lehner  [5] and Shimura [8]. Thus we must defer until later 

such questions as the relations among these functions and the Eisenstein and 

Poincar6 series, Petersson inner product, Hecke operators and so on. Ultimately 

it is hoped that a careful cataloguing of the various modular forms obtained by 

these methods will enable one to write down explicitly a basis for the cusp forms 

of weight two ( =  abelian differentials of first kind) for the groups Fo(m) and 

F(m). Some progress has been made in this direction but a discussion of this 

program is outside the scope of this paper. 

1. Lattices 

Let n be a positive integer and C" the space of n-tuples of complex numbers, 

taken as column vectors .  The entries (or coordinates) of z E C" are usually 

denoted z , , . . - , z . ;  thus ' z  is the row ( z , . . . ,  z,) ,  ' t '  indicating the transpose. 

The dot product for z, w E C" is z �9 w = ' z w  = E'~z~ zkw~  and the length of z, 

II z II, is given by II z Ip = = z -  ~, the bar indicating complex conjugate. If M is an 

n x n matrix the notation M [ z ]  = z �9 M z  = ' z M z  is convenient and will be used. 

Let r~, r2 be non-negative integers with rl + 2r2 = n. M',"2 is the set of vectors 

in C" whose first r~ entries are real and whose last r2 entries are the complex 

conjugates of the preceding r2. Thus z ~ M',.'2 if and only if zk = :?k, 1 =< k =< r~, 

and z,,+~+k = f.,,+k, 1 =< k -< r2. If one of rl or r2 is zero the obvious modifications 

must be made in the previous sentence. If r~ = n, r2 = 0, M "'~ is just R", the space 

of real vectors. From now on we consider n, r~, r: as fixed and write simply M for 

M','% Note that z E M  implies : ? E M  and for z , w  E . I , t ,  z .  w is real and 

(1)  II z + w II 2 -- II z II 5 + II w II 2 + 2 z -  ~ .  

M is a real vector space of (real) dimension n with a basis given by the 

columns of the n x n matrix 

(2) �9 = ~" '  '= = 

El 0 0 / 

0 E2  iE2 

0 E2  - iE2 . 

Here E, is the identity matrix of size rj Q' = 1, 2,) and each 0 is a zero matrix of 
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appropr ia te  size. Any n x n matrix whose columns form a basis of At will be 

called a basic matrix for At. Another  important  matrix is 

El 0 0 / 

0 0 E2 

0 E2 0 . 

(3) R = R ' , " , =  

If A is a nonsingular matrix we set A * = ' A - I  so that, when defined, ( A B ) *  = 

A ' B * .  

PROPOSmON 1. 

i) det �9 = ( - 2 i ) "  and ~ *  = ~ H ,  

H =  0 

0 

00) 
�89 0 

0 -�89 �9 

ii) A is a basic matrix  for  At iJ: and only i f  A = ~ G ,  G an n • n real nonsingular  

matrix.  

iii) I f  A is a basic matrix  for  At then so is A*. 

iv) R = 'R = R -1 = R *, det R = ( -  1)'2.If x, y E At and A is a basic matrix  for  

At then R x  = s R A = A,  x . ~ = 'xRy ,  and II x II 2 = R [x ]. 

PROOF. (i), (ii), (iv) are straightforward linear algebra. For (iii), note that, by 

(ii), A = ~ G  so A * =  d~*G*= r whence, by (ii) again, A* is a basic 

matrix. 

A lattice in At is a free abelian group (under vector addition) generated by a 

basis of At. Thus every lattice, as a free abelian group of rank n, has a basis which 

at the same time is a vector space basis for At. If the vectors A1, �9 �9 ", A, of At are a 

basis for the lattice Lf the matrix A whose columns are At, ' �9 ', An is called a basic 

matrix for ~ .  A is then a basic matrix for At also. Conversely if A is a basic matrix 

for At it is also a basic matrix for the lattice ~ consisting of all integral linear 

combinations of the columns of A. The simplest example of a lattice is Z ~, the 

lattice of integral vectors in At ~'~ R ' .  

Let Lf be a lattice in At with basic matrix A. Then,  by the above remarks,  

every z E At has a unique expression as z = As r, s r ~ R ' ,  and z ~ ~ if and only if 

~: E Z ~. The totality of basic matrices for ~ is {AU}, U ranging over  all n x n 

unimodular  matrices (integral matrices of determinant  - 1). ~ = {,~: A E L f  } is a 

lattice with basic matrix ~, and for c a nonzero real number  cLf = {cA: ,~ E ~ }  is 
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a lattice with basic matr ix cA. If c is an integer  then c ~  is a sublatt ice of ~ with 

index (in the sense of g roup  theory)  [ ~ :  c ~ ]  = I c I"- In the following proposi t ion  

we give two basic definitions. 

PROPOSITION 2. Let ~ be a lattice in ~ with basic matrix A. 

i) The discriminant of ~,  D ( ~ ) ,  is defined by D ( ~ )  = (de tA)  2. It depends 

only on ~f and not the choice of A. D ( ~ )  is a real number, positive if r2 is even, 

negative if r2 is odd. I D ( ~ ) I = ( - 1 ) ' ~ D ( ~ ) .  D ( c ~ ) = D ( L P )  and D ( c ~ l  = 

c2"D(~).  

ii) Let ~1 be a lattice with basic matrix At. Then ~ is a sublattice of .~ if and 

only if A1 = AG, G a nonsingular integral matrix. It this case then, [ ~ :  ~1] = 

[det G[  and D ( ~ I ) =  [ ~ :  ~l]2D(.~)  �9 

iii) ~ *  = { z E .4/; z �9 X ~ Z for  every  X E ~ }  is a lattice, called the dual lattice 

o f~ .  A* is a basic matrix for ~*  and D ( ~ * ) =  D ( ~ ) - ' ,  (~* )*  = ~ ,  (c~l * = ( ~ * ) ,  

(c3r * = c-I~ *. 

PROOF. If U is unimodular, (det A U) 2 = (det A) 2, which shows D (~I is well 

defined independent of the choice of the basic matrix A. By Proposititon I we 

may write A -- ~ G ,  D ( ~ ) =  (de tA)  2 = (det<b)2(det G )  2 = ( -2 i )2 '2(de t  G )  2 = 

( -  1)'~p, p a positive real number .  The  rest of (i) is clear. (ii) is s tandard matr ix  

and group  theory ,  for  details see [1, p. 125]. For  (iii) it is clear that  ~ *  is a 

subgroup of d~. By Proposi t ion 1 (iii), A* is a basic matr ix for  dt along with A, so 

we can express z E J R  as z = A * ~ ,  ~ : E R " ,  and A E ~  as Au, u E Z  n. Then  

z �9 A -- ~ .  u is an in teger  for  all u E Z"  if and only if ~ E Z n, i.e., z is an integral 

l inear combina t ion  of the columns of A*. Thus  ~ *  is the lattice genera ted  by the 

columns of A*. The  rest is obvious.  

We are in teres ted in lattices ~ with the proper ty :  

(4) A �9 is an integer  for  all A,/x E ~ .  

It follows then that  II A l[ 2 = A �9 ,~ is an integer.  However ,  for  the purpose  of the 

functions to be const ructed  it is more  convenien t  to have II A II 2 an even integer.  

Thus  we define: A lattice ~ satisfying (4) is odd  if for  some A ~ ~ ,  11A [I 2 is an odd  

integer  and is even if 11 A II 2 is an even integer  for  all A ~ ~ .  For  example ,  Z "  is 

odd.  If ~ is an odd  lattice, then it is easily verified, using (1) and (4), that  

L:o = {A ~ Ze: II A I12 is even} is an even lattice of index 2 in &:. No te  also that  every  

sublatt ice of an even lattice is even and if ~ is even so is c~. The  condi t ion (4) is 

equivalent  to L~ C ~ * ,  and in the next  propos t ion  we obtain a re f inement  of this. 

PROPOSITION 3. Let ~ be an even lattice. Define the positive integer L = 

L ( ~ ) =  g.c.d. {(I/2)11X 112: X ~ ~ } .  
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i) For all h,/~ E 27, )t �9 -~ 0(mod L).  

ii) 2? is a sublattice of L~* .  If  A =A(27) is the index [L.~*:27 1 then 

I D(2?j  I = L " a .  
iii) L ( ~ I  = L(271, A(~I = A(27~. If c is a nonzero integer L(c2?t = c2L(271, 

A(c2?~ = A(27~. 

PROOF. For all h ~ 27, [[ A [[2 = 0(mod 2L)  whence by (1), with z, w replaced by 

A,/z, 23. �9 =- 0 (mod2L)  which gives (i). (i) can be restated as )t � 9  E Z so 

that 12/LE2?*,  ~ G L ~ * ,  i.e., 27 is a sublattice of L ~ * .  Since 2 ? C ~ * ,  

Proposition 2, (ii), (iii) show that [~*:  2?]2= D(2?) /D(~*)=  D(27) 2 so that 

taking (positive) square roots, [D(27)[ = [~*:  2?] = [~*:  L ~ * ]  [L~*:  2?] = 

L " A  which proves (ii). (iii) is easy. 

If 2? is a lattice satisfying (4), and A a basic matrix for 2? with columns 

A1,. . . ,  A, then every A E 2? is h = Au, u ~ Z"  and [[ A II 2 = ~7,k~l ajku, uk is a 

positive definite quadratic form Q(u)  in u l , . . . ,  u, with integral coefficients 

as~ = hi �9 h~ = akj. The matrix (aik) = 'AA is a positive definite integral symmetric 

matrix, with even diagonal coefficients if 2? is even. In this latter case it is clear 

that L = L(27) is the largest positive integer such that 'AA = LA,  A an integral 

symmetric matrix with even diagonal entries. Then det ('AA) = L"  det A while 

on the other hand d e t ( ' A A ) =  [D(27)[ = L"A.  Thus A = d e t A  and if n is odd it 

is not difficult to see that det A must be even so we deduce that 

(5) if A is odd n must be even.  

Example of lattices arising from algebraic number fields and the related 

quadratic forms will be discussed in Section 5. We only point out here that two 

different lattices may give rise to the same quadratic form Q. For example, let 27 

be the even lattice in ~2.o consisting of all A E Z 2 such that II AII 2 is even. Then 

11 / 
is a basic matric for 27 and D(27 )=  4. Let 2?' be the even lattice in M ~ with 

basic matrix 

i A,_- _ i )  

Then D(2? ' )=  - 4  and both 27 and 2?' give rise to the same quadratic form 

O(u~, u~) = 2(u~ + u~). 
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2. The Theta |unction 

The generalized upper  half plane of degree n, ~" ,  is the set of n x n complex 

symmetric matrices with positive definite imaginary part. In particular ~ ,  or 

simply Y(, is the usual upper  half plane. For x, y, z ~ C" and Z E ~ "  the series 

(6) ~'~ e 2"'"+~)'''*y)+~'zf"+xl 
m E Z  n 

is absolutely convergent and uniformly convergent on compact  subsets of 

C" x C" • C" • ~" .  The function defined by (6) - -  analytic in x, y, z, Z - -  is 

called the 0 function, denoted 0[~ ](z, Z) .  x, y are usually taken as fixed and [~ ] 

is then called the characteristic of the 0 function. Note that O['r  

0[~ ](y + z, Z )  so that y or z might be dispensed with, but our notation is more 

or less traditional and has its advantages. There is a vast literature devoted to the 

0 function but we shall be able to develop here most of those propert ies that we 

intend to use. References to the classical literature along with detailed develop- 

ment  of the theory from the point of view of applications to Riemann surfaces 

will be found in the book by Rauch and Farkas [6]. A concise introduction to the 

0 function is presented by Eichler [2]. The reader should be forewarned that the 

notation in this subject has never  been standardized and one must exercise some 

caution when using different sources. 

Now we associate a 0 function with each lattice Lr essentially by replacing in 

(6) the sum over  Z"  by a sum over  the vectors in 4 .  First though we must define 

~,, .  ,2 the analogue of Y(". The condition that a symmetric matrix Z be in ~ "  is 

(Im Z)[~r > 0 for all ~: E R", st# 0, which can also be expressed as Im (Z[~])  > 0. 

We define now y(,1.,2 as the set of n • n complex symmetric matrices V 

satisfying Im (V[x ]) > 0 for all x E 5 /" '  ,5, x # 0. Thus Y('~ o is the original ~" .  If A 

is a basic matrix for 5 / s e t t i ng  x = As r ~r E R", we see that V ~ Y(',"2 if and only 

if 'A VA U ~" .  In particular, as it is known that - Z -1E ~ "  if Z E Y(" it follows 

that - V -1E Y(',' '~ whenever  V E ~',"2. Indeed, V E ~ ' , '  ,2 implies - ( 'A VA) -~ 

= ' A * ( - V - ~ ) A * E  ~ "  and since A* is also a basic matrix for 5/ the result 

follows. Every matrix of the form ( 00 / 
V =  0 S T 

0 T S 

with U E ~ " ,  T E ~,2 and S an arbitrary r2 x r2 symmetric matrix is in ~' ,"2. 

For, any x E 5/ ' , '  ,2 is 
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(a) x = b + i c  

b - ic , 

a E R'2, b, c E R'2 and a calculat ion shows 

I m ( V [ x ] ) =  Im U[a]  + 21m T[b] + ZIm T[c]  

which is posi t ive unless a = 0, b = c = 0, i.e. x = 0. In part icular ,  if r E Y( then 

V = ~-R (R as in (3)) is in ~,,.,2 and - V - ' =  ( -  1 / z ) R .  

Now let ~ be  a lattice in . / / =  M'," ,2, x, y, z ~ C", V E ~ ' , '  ,2 and define the 

funct ion 0~e by 

0~e[X](z, V ) =  ~] e 2''(~+~,(~+y)+'v~A+~'. (7) 
L Y J  

In case ~ = Z "  this coincides with the original 0 defined by (6). If A is a basic 

mat r ix  for  ~ we see that  

so that  there  is no p r o b l e m  as to convergence  in (7) and analytici ty in x, y, z, V. 

H o w e v e r  the great  advan tage  in working  with 0~e as def ined by (7) ra ther  than 

with the right side of (8) is that  one  can deal  directly with a lattice and there  is no 

need to specify any par t icular  basic matr ix.  Along  with 0~e we consider  the 

funct ions  ob ta ined  by different iat ing with respect  to the coord ina tes  zj of z. Le t  

s = (sl, s2," �9 ", s~) be  a finite sequence  of integers,  1 _-< sj _-< n for  each j, and define 

x 

l is the length of the  sequence  s and we agree  to allow also s = (0), the e m p t y  

sequence  of length l = 0 with the usual conven t ion  0~ ) = 0se. The  series (7) can be 

di f ferent ia ted  t e rm by t e rm and we obta in  

0~ff [ x ]  ( z ' y  V ) =  (27ri)S ~A~e c~')(A'x)eZ"~+')'~z+')+"w'~+" 

(10) 
I 

c"(,t, x) = H + 

where  Ask, xsk is the skth c o m p o n e n t  of  the vec tor  A, x, respect ively.  
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PROPOSITION 4. 

i) F o r ~ ,  v ~ *  

0~'[x+:l { 1 Y + (z, V ) =  e~,~.~Og) Y x (z, V ) .  

In particular, 0~)[x;" ](z, V) = 0~?[; ](z, V). 

ii) I f  ~ is a sublattice of 2G of index A and ~ , . . . , [ 3 ~  is a set of coset 

representatives of ~ m o d ~  - ~ ,  = Uj=,(13s + ~ ) - - t h e n  

( ,  v ) =  ,_, o~ > (z, v ) .  
Y s=l Y 

iii) I[ ~ '  is a lattice in ~",+:q, r', + 2G = n, A, A' are basic matrices for:~, ~ '  

respectively, and W = (Wsk),_~S,k~, = A 'A- '  then 

X ,,1) o.[, ]~,.,,)= o~[ w ,,,~. 'Wy J(wz,'wvw). 
I f  s is any sequence with length 1> 0 then 

[] [w,,,~.... (12) o~! yX (z, v)= ~,,..-,~,=,~ w~,~, w,~-.- w~,~, o~ ,',~,' 'Wy ]t wz,'WVW). 

PROOF. (i) follows by direct  subst i tut ion in (10) not ing that  as A ranges  over  

so does  3. + p. and e 2~* ~ = 1. (ii) is p roved  similarly. T h e  first par t  of (iii) follows 

f rom (7) upon  replacing ~ by ~ '  and noting that  as A ranges  over  ~?, A ' =  WA 

ranges  over  ~ ' .  Successive different ia t ion of (11) yields (12). 

A special  case wor th  men t ion ing  is: If ~ ' =  c~,  c a nonzero  real number ,  we 

can take  A' = cA,  W = cE, E the n x n ident i ty  matr ix ,  and obta in  for  I _-> 0, 

o<.,rxl,,. [7]>,'~ (13) ':~ i y J t , v )  = c 'o• ) (cz, c 2 v ) .  

Taking  c = - 1 ,  c ~  = LF and 

,14)  o,,[x]~.,..):, ,,~,,[ x],_~., ,)  
y - y  

If f u r t h e r m o r e  2x E ~ ,  2y ~ ~ *  and 2x .2y  = k E Z then 

0,,[;]~_,, ~)_-0,,[-x+2/] [ } y + 2 y  ( - z ' V ) = ( - 1 ) ~ O g )  - x  ( - z , V )  - y  

(by (i) of the p r o p o s i t i o n ) =  ( -1y+ '0g) [ ; l ( z  , V) (by (14)). In this case then  

0~)[ ; l (z ,  V) is an even or odd funct ion of z. W h e n  odd,  0g)[;l(0, v) is 
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0z [o] (0, V) vanishes identically identically zero as a function of V. In particular ~') o 

in V when l is odd. 

The next step is to carry over to 0~ ) part of the transformation theory of the 0 

function. For our purposes we take as our starting point the known formula 

X 

We claim that for 0z this becomes 

X 

v o( e) 

This is deduced by expressing the left side of (16) as an ordinary 0 via (8), - V- '  

is thus replaced by ' A ( - V - ' ) A  = - ( ' A * V A * ) - ' ,  then apply (15) with Z = 

'A* VA* and recalling that A* is a basic matrix for ~ *  a reverse application of (8) 

brings us to 0~e.. The discriminant D ( ~ )  enters from d e t ( - i ' A * V A * ) =  

det ( - i V ) ( d e t  A) -2= det ( - i V ) / D ( ~ ) .  The square root in (15) is determined 

uniquely by the condition that for Z = iE X/det ( -  iZ) = 1 and then by analytic 

continuation, since ggn is simply connected. 

If both sides of (16) are differentiated successively with respect to z,,, z~, . .  �9 as 

before the formulas become quite complicated, so henceforth we shall restrict 

ourselves to the case which finds immediate application in this paper. From now 

on we consider only x, y E ~ and V = rR. Furthermore we write 0~[~](z, z) in 

place of O~)[~](z, zR) and 0~[~](~ ") in place of 0~)[~](0, r). We have then - -  

noting Proposition l(iv) and (10) 

(17) 0~' [ x ](z,~-)= (27ri)' ~ c'~'(.h, x )e 2'''A§247 

and (16) specializes to - -  using Proposition /(iv) and Proposition 2(i) - -  

(18) o x - / '  [Jx]< .== , . ,  

The linear transformation z ---> z '  = Rz permutes the coordinates of z. Carry- 

ing over this permutation to the indices 1 , . . . , n  we set k ' =  k, 1 =  < k_-< rl, 

k '=  k + rz, rl+ 1 <= k <= r~+ r2, and k ' =  k - r2, r~+ r2+ l < k =< n. Then the kth 

coordinate of z' is z ;, = z~,, (k')' = k, the j, k entry of R is Rj. ~ = 6jk, (Kronecker 

8), R [z] = E~,=I ZkZk, and (0 / Oz~)R [z] = 2zk,. For the moment let us write (18) 

as F ( z ) =  A ( z ) B ( z )  where F(z)  is the left side, 
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A ( z ) = ~ / ~ e 2 ~ "  Ye "~'RI'J and B(z)=C(~-Rz) 

where C ( z ) =  0.~.[ ~](z,~'). Then  (OA/Ozk)(z)=27rizzk,A(z), (OB/Ozk)(z)= 
z(OC/ Ozk,)(rRz) and (OF/ Oz~)(z)= 2~rizzk,a(z)B(z)+ a(z)'r(OC/ Oz~,)(TRz). 
A second differentiat ion with respect  to zj then yields 

02F Ozk, 
OzkOzs (z) = 2wi-r-~z j a ( z ) B ( z ) +  2rrizzk, (A(z)B(z) )  

OC (rRz)+A(z )r2  02C (~'Rz). 
+ 27rir2zs,A (z) Ozk---~. Ozk.OZs. 

In the formula  for  OF/Oz~ we see that  setting z = 0 leaves only one nonzero  

term on the right side, the one  on the ext reme right. The  same is t rue for  

02F/Oz~Ozj provided Ozk,/azj=O, i.e., k '~] .  We thus define a sequence  

s -- (sl, s2," �9 ", st) to be admissible if for every k which occurs as a term of the 

sequence k '  does not  occur  as another  term of the sequence.  For  example,  if 

n = 3, rl = r2 = 1, the sequences (2, 1, 2, 2), (3, 3, 3) are admissible while (1, 2, 3) 

and (1, 2, 1) are not.  No te  that  every subsequence  of an admissible sequence  is 

admissible (including by convent ion  the empty  sequence of length 0) and that if s 

is admissible so is s '  = (s'l, s~,. �9 s'~). Clearly if r2 = 0 an admissible s must  have 

l =< n while if r2 > 0, l can be arbitrarily large. A n  inductive a rgumen t  now shows 

that if s = (s~ , . . . ,  s~) is an admissible sequence  then 

0 IF 0 IC 
Ozs,"" Ozs, ( z ) =  ~,+A(z)'r' Oz~,"" Oz~', CrRzs' ' 

where E is a sum of terms each having some zs as a factor  so that  z = 0 gives 

~: = 0. It follows that on differentiating (18) l t imes and setting z = 0 we get 

x 'x],,, ~ / I D ( < m ) l  - " 

We now have to be explicit about  the square root.  We  make  the convent ion  

that for any complex number  b ~ 0, arg b is that  value of the a rgumen t  satisfying 

-~r<argb-~r, logb=loglb[+iargb and b ~ = e  ~'~ 

PROPOSITION 5. Let ~ be a lattice in ~,  x, y, E ~l, and s an admissible 
sequence of length l >= O. 

y �9 
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PROOF. In (19) let s = ( 0 ) , x = y = 0 a n d o b t a i n  

Israel J. Math. 

0 0 vl 

which for r = i becomes 
/ 1 

e ~/ ~ e - '"* 112 ~" II Jl. 112 

, ~  IV(Le)l , ~  �9 

As both series are sums of positive terms we see that f ( r )  = V'( - i'r)"/[ D ( ~ )  [ is 

the unique analytic function of r E ~ whose square is f ( r )  2 and satisfies f ( i )  > O. 

According to our conventions ( - i )n12z"12/X/ ID(~) l  has these properties, 

hence is f ( r ) ,  which proves (i). If A is a basic matrix for ~ then ~, = R A is basic 

for ~ so that in Proposition 4(iii) we can take W = R and (ii) then follows from 

(12) with z = 0, V = zR. 

Keeping the hypotheses as in the above proposition let us further assume that 

is an even lattice, L = L ( ~ ) ,  A = A(L) as defined in Proposition 3. We define 

(20) p = L ~ *  and J = p l ~ .  

J is a finite abelian group of order A whose elements are cosets a + ~,  a E ~. 

Allowing a slight abuse of language we also speak of the element a E J meaning 

the coset a + ~.  Also, for a,/3 E ~ or, more generally, a,/3 E ~ we write 

a----/3 m o d ~  for a - / 3  E ~ .  Now ~ * =  (1 /L) f f  so application of (13) and 

Proposition 5(ii) shows that Proposition 5(i) can be written 

(21) (-ir': 
:e [y  V~I D ( ~ )  [ 

By Proposition 4(ii), 

L ;  ] ( , r /L  2 ) 
07)[ - ( 1 /L ) s  

n 12+1 

L I 
_ _ 0 ~ ) [  L)7 ] (,r/L2)" 

- (1 /L)s  

= ~  O(ff[ L]+/3 ](r/L2), 
,~, - ( 1 / L ) ~  

the sum over/3 E J meaning that/3 ranges over a set of coset representatives of 

mod ~.  Putting this in (21), then replacing r by L2r, recalling I D ( ~ ) [  = LnA, 

a slight manipulation yields 

(22) 
x ] ( _  1/(L2r))  0(-~) y 

(Lr)  n/2+t X/A ~ 0~) L)7 +/3 ~, - (1 /L)~  (,r). 
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W e  have  now achieved that  funct ions of the same  type 0g  ) a p p e a r  on bo th  sides 

of the equat ion .  The  reason  for  writ ing (22) with the extra  power  of  L"r on the 

left will a p p e a r  below.  Now we consider  the effect of replacing z by ~" + u / L ,  

u E Z in 0 ~ [ ~ ] ( r ) .  The  typical exponent ia l  t e rm in (17), with z = 0, is then  

But 

e z,,i (x + x). y + ,,i, jl x + x 112+ ~-i ( a / L )~1 ,k + x l[ 2 . 

e ,~i(,, / L)II x +x 12 = e ~iu (11 x i i2 /L)e  " "  / L)II x I1= e 2,~x - (u~) / L 

Since 11A t]2/L is an even integer  the first factor  is 1. It  is at this point  that  crucial 

use is m a d e  of the fact that  ~ is even.  The  second fac tor  is i ndependen t  of A and 

we can write 

Finally, 

e 2 ~ i ( x + x ) . y + m ( r + ( u / L ) ) ~ l x + x l l  2 _ e -~ i (u /L ) l l x l fZe2m(x+x) . ( y+(u /L)~)+r: i r l la+x l l2"  

(23) O~)[x]('r+u/L)=e-"("/L)ll'lf'O(')[ x ](z). Y ~e [ (u /L )2+y  

To put  these formulas  in p rope r  perspec t ive  we recall briefly some  not ions  

(a f rom the theory  of modu la r  forms.  Let  M = d E SL (2, R) ,  the g roup  of real  

2 x 2 matr ices  of d e t e r m i n a n t  one,  f = [ ( r )  a funct ion of �9 E ~ and let w E C. 

The  ' s t roke  o p e r a t o r '  of weight  (or degree)  w is def ined by  

ar+b 
(24) f lw M(~) = (cr + +------~. 

c~" 

(cz + d) w is def ined by our  genera l  convent ion  on powers .  No te  that  c~" + d is 

never  zero and arg (cz + d) is a con t inuous  funct ion of z in ~ .  For  fixed w we 

write s imply f IM in place of f I M. For  fixed w and M f--* f 1~ is l inear  in f and if f 
w 

is analytic so i s f ]M.  If M k = ( a k  bk]  k = 1 , 2 ,  and M = M i M 2 t h e n  \ ck dk 1' 

(cz + d)  = (c , (M2r)  + dO(c2'r + dz), f IM = v(M,, M2)(f I~,)Ira, (25) 

where  

(c~" + d)  w 

We claim that  v depends  only on w, M~, M2 but  is cons tan t  in I". In fact,  by the 

first equa t ion  of (25) and proper t i es  of the a rgument ,  
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(26) arg (cz + d) = arg (c~(M2z) + d~) + arg (c2~- + d2) + 27rk 

where k is an integer depending on M~, M2 and continuous in % whence it is a 

constant in z. Thus k = k(M~, M2) can be computed by using any particular 

convenient value z = z0 in (26). It follows from (26) that 

(27) v~ (M~, M2) = e-2~'k', k = k (M1, M2). 

In particular, v~ = 1 if w E Z, v~ = v~, if w - w ' ~  Z and f [ ~ , ~ =  f l~,l~ if 
w E Z. Actually we shall always have 2w E Z so that vw = --- 1 in our applica- 

tions. 

The (homogeneous) modular group F = S L ( 2 ,  Z)  is the group of all 

M E SL (2, R)  whose coefficients a, b, c, d, are integers. The inhomogeneous 

modular group is the corresponding group of M6bius transformations z ~ M(r) .  

It i s w e l l k n ~  -1)0 ' T = ( 1 0  1) W i t h E t h e l  " 

2•  2 identity matrix, we have S 2= - E ,  S 3= S -~, S 4= E, (ST) ~= - E ,  T ~=  

easily seen from (26) and (27) that for all M =  1 ' u E Z .  It is 

c d ESL(2 ,  R) 

(28) k ( M , S ) = f - 1  if c - O ,  d < O  
k(M, T~)= k (T" ,M)=O,  [ 0 otherwise 

Thus for any w, vw(M, TU) = v~(T",M) = v~(M,S)= 1 except in case c =>0, 

d < 0 where vw(M, S) = e 2~'~. 

For any real r > O and M = ( a b ) E sL (2, R ) let 

is an automorphism of SL (2, R). Then one has 

(29) k (M~t,), Mw)) = k (M1, M2), vw (Mitt), M2(r)) = vw (M1, M2). 

We now observe that using the stroke operator of weight n / 2  + l equations 

(22) and (23) can be written upon suppressing the z as functional equations 

e ~ t(M, fl)O~ ) a x + c ; + f l  
Y B~ b~ + dy 
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M = ( a  b ]  is Sa.) or T~L), v(x,y,S~L))=2x'y,  u(x,y,T~L)) = where 
\ a 

-(u/L)llx II 2, t(s,L,,/3)= (-i)"'21x/-A for all/3 and t(T~'L),/3) = 0 or 1 accord- 

ing as /3# 0 mod ~ or /3-= 0 mod Le. Since every M E F can be expressed in 

terms of S and T the same is true for every M E F(L) in terms of S~L) and T~L) and 

successive applications of (30) should yield a formula for every M E F~L). The 

question is what are the v(x, y, M) and the t(M,/3). Suitable experimentation 

leads one to introduce the following notions. For ( x , y ) E . / / •  M =  

( a  b )  E SL(2, R) define 

(31) (x, y ) o M  = (ax + c~, bs + dy) .  

This is clearly an R-linear action on ~ • ~ ,  but more interesting is that it is a 

group action, as is easily checked: 

(32) (x, y)o MIM2 = ((x, y)oM,)oMz.  

Now with (X, Y) = (x, y) o M define 

(33) v(x, y, M )  = x -  y - X .  g = - ab II x It 2 -  ca II y II 2 -  2 b c x .  y 

where we have used ad - bc = 1. Note that for M = StL) or T~'L) this u(x, y, M) 
coincides with that used in (30) above, u(x, y, M) satisfies a 'cocycle' condition: 

(34) u(x, y, M~M2) = u(x, y, M~) + u((x, y)o M~, M2). 

The proof is easy: let (X, Y) = (x, y)~  M1, (~, 1"/.) = (X, y)oM2 = (x, y)oM~M2 by 

(32), then u(x,y, M i M z ) = x . y - ~ . ~ l  = ( x . y - X .  Y ) + ( X .  Y - ~ . r l ) =  
v(x,y, Mt)+v((x,y)oM~,M2).  We now state our basic theorem using the 

terminology and results developed above. 

THEOREM 1. Let ~ be an even lattice in ~t. For each M ~ F(L) there is a 
complex valued function t(M) defined on J such that for every x, y E./R and 
admissible sequence s 

]1 ,vr = e ~ '~  y y/3]. 
We write t(M,/3) for the value of the function t(M) at/3 rather than NOTE. 

t(M)(/3 ). 

PROOF. 

will be 

We already know the result is true for M = StL), T" tL) so the theorem 

proven if we show that whenever the result holds for Mk = 



I60 

(ak bk) 
ck dk ~FtL~, k = l , 2  then 

v (M~, M2) = v./2(M~, M2), (X, Y) -- (x, y) o M~, 

then 

: v e" i* ' Y '~~  ~ Y 

J. L E W I T T E S  Israel  J. Ma th .  

it holds for M = ( a c d b )  =M1M2 also. Let V = 
r 

(~, 71) = (X, Y)oM2 = (x, y ) o M ;  

= ve ~i.,  y, M,) ~" 
a,  1 3 E J  

A little calculation shows 

p ( X  + /3, Y, M2) -- v(X, Y, M 2 ) -  2alb2X . ~ - 2b2c2 Y . [3 - a2b21[ /3 [[ 2. 

Furthermore since M2 ~ F~L), Lb2 ~_ Z and /3 ~ o~ = L~*  whence b2/3 E ~ *  so 

that the term b2/3 can be removed from the bottom of the characteristic by 

Proposition 4(i) introducing an exponential factor. Finally collecting terms, 

M2 

e"i~tx§ t(M1,/3)t(M2, a)  0~ ) [ a2(X +/3)+ c2fr + ct]. 
[ b 2 ( X + f i ) + d 2 Y  

Since in the last characteristic all that matters is a2/3 + c~ mod ~ the formula can 
be rewritten as 

with 

(35) tiM, 3') = v ( M , ,  M2) Y~* t(M,,/3)t(Mz, o~)exp(zria2b2l[ [3 II 2 + 2,~ib2/3. a) 

where Z* is the sum over all ordered pairs (/3, a )  in J x J such that a2/3 + a -= 

3' rood ~. This completes the proof. 

The function t (M)  - -  which we consider simultaneously as a function on J and 

as a function on ~ constant on cosets of Lr - -  is not necessarily uniquely 

determined, for M E F~L) does not have a unique expression as a word in S~L) and 

T(L) and furthermore, the functions 0~,)[x~](r), /3 ~ J ,  are not necessarily 

linearly independent for fixed x, y. Thus t (M) is potentially a multi-valued 

symbol but this will not matter as long as we take it to mean any t (M)  obtained 

by expressing M as a word in S<.) and T~L) and iterating, using (35) and the initial 

= ve,,,*.y.M) ~" 
y M a,/3~J 

t(M,, ~ )t(M2, a )exp (Tria2b2[[ [3 II 2 

+ 2~rib2/3 . ff) O~' [ ' + az/3 + a ] . 
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values of t(S(L)), t(T~L)) given after (30). Theorem 1 involves the group F(L)which 

depends on Zf while it would be preferable to have the single fixed group F. This 

can be achieved by a change of variable in r (but then unfortunately L ' s  begin to 

proliferate in the formulas). It is easily verified that if f, fl," �9 ", f~ are functions of 

r and f [M,~, = Eff=lCkfk, for certain constants ck, then the functions g(r )  = f ( r / L ) ,  

g~(r) = f , ( r / L ) , . . ,  satisfy g [M = E~=~ckgk. Thus, writing the matrices M E  F~L) 

as M~L), M ~ F, and noting (29), we can reformulate the theorem as follows, 

along with a summary of the basic formulas. 

(36) 

THEOREM 1'. Let ~ be an even lattice in 2t and define the functions 

x 

for any x, y E 21 and admissible sequence s, 

f 
ax + Lc]  + [3]. 

b s  + dy 

v(x, y, M,L)) = -- (ab /L  )[[ x [[2 _ Lcd [1Y II 5 -  2bcx . y. The t (M)  satisfy: t(S, [3) = 

( - i ) " / : /X /A  for all /3, t (TU,[3)=l  if [3==-0 m o d ~  and t (T" ,[3)=O if 
/3 ~ 0 mod 37, and 

(38) t (M, M2, T) = v(M,,  M2) ~,* t(M,,  [3 )t(M2, a )  

the sum being over all (/3, a ) E  J • J such that a2/3 + a =- y m o d ~  and 
v(M,,  M2) = v./2(M,, M2). 

3. Evaluation of t(M) 

The problem at hand is to find an explicit expression for t(M, [3). Considering 

(38) suggests introducing 

qb(a) = e c''/L~"all:, l)(a, [3) = e t2~'/L)~ "~ 

for a,/3 E ~. (Note: this qb has nothing to do with the matrix r of Section 1). 
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PROPOSITION 6. 

i) 1)(t~,/3) = 1)(/3, a ) ,  ~ ( a  + /3) = qb(a)~(/3)1)(a, /3);  

ii) ~ ( a l  + a2,/3) = 1)(m,/3)1"~(c~2,/3); 

iii) qb(a) and I~(a,/3) depend only on ot and/3 m o d e .  

Thus they define functions (still denoted) �9 and ft on J and J x J respectively ; 

iv) for each/3 E J the function a ~ 1)(a,/3) is a character of J, call it X~. The 

mapping fl --~ X~ is an isomorphism of J onto its character group J. 

PROOF. (i) and (ii) are clear. If A E ~ ,  II '~ II 2 -= 0 mod 2L so  that r = 1 and 
(1 / L ) A . / 3  = ) t .  (/3 / L )  E Z, since (/3 / L )  ~ .7'*, so that 1)(A,/3) = 1. (i), (ii) then 

give qb(a + A ) = qb(a) and 1)(a + A,/3) = 1)(a, /3)  = 1)(a,/3 + A ) which is (iii). It is 

now clear that  a'o is a charac ter  and/3 --* X~ is a homomorph i sm.  As both  J and J 
are finite groups of o rder  A to show this is an isomorphism it suffices to p rove  
that  if X~ is the identi ty character  - -  i.e., X ~ ( a ) =  1 for all a - -  then /3 - 0  

mod  LP. But  if /3 ~ 0 rood ~ t hen /3  ~ ~ = (~* )*  so there  is s o m e / z  E ~ *  such 
that / 3 . p , ~ Z ,  or, with a = L / X ,  t ~ E ~  and ( 1 / L ) / 3 . f f ~ Z ,  hence  x o ( a ) =  

1)(,~,/3) # 1. 

COROLLARY. Let a,/3 E J. I f  the order of ot is a and the order of/3 is b and 

c = (a, b) then 1)(a,/3) is a cth root of unity. Furthermore there is some 3t ~ Jsuch 

that 1)(a, 3t) is a primitive ath root of unity - -  in which case the order of V is a 

multiple of a. 

This follows from s tandard results of the charac ter  theory  of finite abelian 

groups.  

Again,  let /3 E J have o rde r  b so that  f~(/3,/3) is a b th  root  of unity. Then  

~(/3)2 = 1)(/3,/3) whence  qb(/3) is a 2b th  root  of unity. Now we have the crucial 

fact that: 

(39) If /3 ~ J has odd order  b then r is a b th  root  of unity. 

PROOF. r ) = exp ((Tri / L)II/3 II 2) so we must  show (1 / L)[I/3 II 2 = 2 w / b for  

some integer  w. But  on the one  hand ( 1 / L ) l l / 3  II 2 = (1/b)(b/3. (~/L))~ (1/b)~e. 

Ze* = (1 / b ) Z  so (1/L)II/3 II 2 = (u/b) for  some integer  u, while on the o ther  hand  

( 1 / L ) l l / 3  II 2 = (1/b2L)ll b/3 II 2 = (1/b2L)2Lv for  some integer  v, since h = b/3 ~ Z~ 

and II A II 2 - 0 m o O  2L .  T h u s  (1 / L)II/3 II 2 = u / b = 2 v / b 2, u = 2 v / b and since b is 

odd,  b[v, u = 2w where  w = v/b .  

A no tewor thy  corollary is 

(40) If~3 E J has odd order b and fl(/3, /3 ) is a primitive bth root of unity then so is 

~(13 ). 
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Returning now to (38) let M2 = T" so t(M2, a )  = 0 unless a -- 0 mod Lr a2 = 1, 

b2 = u and noting the remark after (28) we obtain 

t(M~T", y)  = t(M~, y)  exp (Tri(u/L)II ~ II 2) = t(M,, y)qb" (y ) .  

In a similar way we deduce t(T"M2, y)  = t(M2, y)  and 

v(M , s)( -A t(M~, S, 3') = ~ t(M~, ~) exp ( - (27ri/L)~. ~/) 
13EJ 

= v ( M , , S ) ( - i )  "'2 ~ t(M~,/3)1~(/3, 3/). 

It is interesting to observe that this last formula can be understood as a Fourier 

transform in the context of finite abelian groups. We digress a bit to discuss the 

situation in general. 

Let A be a finite abelian group (under addition) of order N. Fur thermore  

suppose there is on A a function W pairing A with its character  group ,~ as our 

l-I above. That  is, we assume given W:A •  such that W ( x , y ) =  

W(y, x) ~ 0 for all x, y E A and for each y E A, x ~ W(x, y) is a character of A, 

call it Xy such that y ~ Xy is an isomorphism of A onto ft,. Let F = F(A ) be the 

set of all complex valued functions on A. Clearly F is an N dimensional complex 

vector space and can be made into a Hilbert  space with the inner product  

( f , g ) =  (1/N)Yx~Af(x)g(x). The norm of f is then [Ifll ~= (1/N)Ex~A If(x)r. 
The character relation (X,X')=(1/N)Ex~AX(x)x'(x) = 1 or 0 according as 

X = X' or X~  X' shows that {X }x~,~ is an or thonormal  basis for F. Every f E  F 

then has a 'Fourier  expansion'  f = Y,~z c,x with c, = (f, X). The function f on ,~ 

defined by f (x )= ~/-N(f, ~() is the Fourier t ransform of f. The factor ~/~r will 

appear  to be a convenient normalization. In our case with the above identifica- 

tion of A with A via W, f can be considered as a function on A. Then 

f(Y) = ~JN(f,  Xy)= (1/X/~l)Yx~Af(X)ff'(x, y). The following are easy to prove: 

(a) f--~f is an isometry of F, i.e., ( f , ~ ) =  ( f ,g)  for all f,g ~F,  in particular 

]] f II = II f li; (b) if h ~ F and ] h (x)l = 1 for all x ~ A then f ~ fh is an isometry of 

F, (fh, gh) = (f, g) and Ilfh II = Ilfll; (c) if f is an even function, i.e. f ( -  x)  = f(x) 
for all x E A, then so is )~ 

In particular, reverting to our case where A = J, W = lq, N = A, we see that 

the formulas obtained before the above paragraph can be stated in terms of the 

t (M)~ F(J) as 

(41) t(T"M)= t(M), t(MT~) = t(M)dp u, t(MS)= v (M,S) ( -  i)n/Z t(M). 
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It is easily verified that t (T") ,  t(S) are even functions with norm 1/V'A in 

F(J), ~ is even, l~ ( /3 )1  = 1 and Iv(M,S)(-i)"'=l = 1 .  Hence our  discussion 

shows that, considering the t(M) as elements of F(J) :  

1 
(42) for all M E F, t(M)is an even function and IIt(M) ll = ~/X" 

We see that t(M) is computed from the given t(T ~) and t(S) by successively 

multiplying by a function and taking the Fourier transform. Looking again first 

at the general case with A, W as before let /1 , f2 , ""  be functions in F(A), 
Co, Cl,'.. constants and define go = Co, g, = Crg,-l[, for r = 1 , 2 , . . - .  Then 

Cr 
g'(Y) = ~ A  g , -1 (X) : , (X)~ / ' (X ,  y) .  

Inserting the similar expression for g,-l(x) in this sum, continuing this way, we 

eventually get an r-fold sum 

CoC1 " " " Cr 
(43) g'(Y) = (~/---N)" xl,"2",x, ea fl(Xl)"" " f,(x,)l~'(xl, x2)"" ~,r(Xr-l, Xr)VI/(x,,  y ) .  

W(x,y)  is like an inner product on A except that its values are in the 

multiplicative group of nonzero complex numbers rather than the additive group 

of all complex numbers. Nevertheless one can mimic the procedure of choosing 

an orthonormal  basis. We say x is orthogonal to y (in A, with respect to W) if 

W(x, y) = 1 and two subsets B, C of A are orthogonal if W(x, y) = 1 for all 

x E B, y E C. We indicate orthogonality by the usual symbol x I y, B l C. We 

first observe that if the orders of x and y are relatively prime then x • y. From 

this it follows that if A -- e p t N A  (p) is the decomposition of A as the direct sum 

of its p Sylow subgroups then this is an orthogonal decomposition, each A tp) is 

orthogonal to all the others. Each A tp) is a direct sum of cyclic groups (each 

having order a power of p) but these in general are not uniquely determined. If 

A = B Q C and the subgroups B and C are orthogonal then W restricted to 

B • B is seen to be a pairing of B with its character group /~ with the same 

properties as postulated for W on A. Thus for each prime p we restrict W to 

A <p) and deduce that for each x E A tp) of order  p" there is some y ~ A ~p) such 

that W(x, y) is a primitive p,,h root of unity. Let p "  be the maximum of the 

orders of the elements of A (~). We claim that if p ~  2 then for some x E A tP), 

W(x, x) is a primitive p'"h root of unity. For, choose some y E A ~p) of order  p' ,  

and then z E A tp) such that W(y, z)  is a primitive p,,,h root of unity. Then the 

order  of z must also be pC1, by the maximum condition on p',. Now if w -- y + z 
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we have  W(y,  z )  2=  W(w, w)l$ ' (y ,  y ) f f ' ( z ,  z) .  If  p ~  2, W(y,  z )  2 is also a pr imi-  

tive pe"" root  of unity while the three  number s  on the right side are p'l 'h roots  of  

unity, hence  for  x equal  to one  of y, z or  w, W(x, x) must  be  a pr imi t ive  pC,,, root  

of unity. Now let B = { y  E A("~: W ( x , y ) =  1}, i.e., B is the kernel  of the 

charac te r  Xx. Then  A (p~ is the direct  sum of ( x ) ,  the cyclic g roup  of o rde r  p e' 

gene ra t ed  by x, and B~ and this sum is o r thogonal ,  A (p~ = ( x ) Q  B, x _1_ B. Then  

restr ict ing W to B we can split off in the same  way a cyclic o r thogona i  direct  

s u m m a n d  of maximal  o rder  in B. Cont inu ing  in this way we obta in  finally the 

ana logue  of an o r t h o n o r m a l  basis. Explicit ly - -  and to fix no ta t ion  - -  

(44) for  p~  2, A (p~ = (a (p ' ' )Q . . .  ~ (Ol (p'h)) 

where  each cyclic g roup  ( a  (p' '~) is o r thogona l  to all the o thers  and W(a (p" o, a (p" o) 
is a pr imit ive  p', '" root  of unity,  where  p ' ,  is the o rder  of  a (p'~. F u r t h e r m o r e ,  

e~ => e2=  > . . .  => eh => 1, h = h,, e~ = e~(p) are invar iants  of  A (p~ and A. 

Note  that  the cyclic groups  occurr ing in (44) are still not  necessari ly  uniquely  

de te rmined .  Also,  the assumpt ion  p ~ 2 was essential  in our  p roof  and an easy 

example  shows the result  can fail for  p = 2. T a k e  A = Z2 ~) Z2, so A = A (2~, each 

x E A  is x = ( x ~ , x 2 ) ,  x , , x 2 = 0  or 1. Def ine  W ( x , y ) = ( - 1 )  ~'y~§ Then  

W(x, x)  = 1 for  all x and no o r t h o n o r m a l  basis as in (44) exists. Thus  p = 2 needs  

an individual  t r e a t m e n t  in any par t icular  case. 

Rever t ing  to (43) the r-fold sum can be simplified using an o r thogona l  

decompos i t i on  of A prov ided  some  assumpt ion  is made  on the funct ions j~. In 

our  appl ica t ions  each f~ is of the fo rm qb" (u E Z )  on J and we obse rve  that  if 

f l ( a , / 3 ) =  1 then by Propos i t ion  6(i), q~"(a + / 3 ) = q b " ( a ) ~ " ( / 3 ) .  Thus  let us 

assume that  each f~ is a W-funct ion .  A W-func t ion  - -  for  lack of a be t te r  name  

- -  is an f ~ F(A)  such that  f(x + y)  = f (x) f(y)  wheneve r  x 3_ y. Thus  qb" E F(J) 
is an f~-function. For  each p I N, let Np be the o rde r  A ("~, this being the highest  

power  of  p dividing N and N = IIp INN,. Each  x E A has a unique express ion  as 

x = Zp i Nx (p~, x(P~E A (P). For  any  W-func t ion  f, f ( x )= IJpf(x (p)) and W(x, y)  = 

IJpW(x("~,y (p)) - -  p always ranging over  p r imes  dividing N. Using such a 

decompos i t ion  for  each x~ ranging over  A in (43) a long with the dis tr ibut ive law 

we obta in  

(45) 

g,(y) : (CoCl.. .  or) 1-I 
p 

1 
g~p,(y) - (V/-~p), ~]  f , (x ~P') ' ' '  fr(x~P')ff'(x~ "', x~p') �9 �9 �9 ff'(x~ p', y(~'). 

xI(P)EA(P) 
i=l,2,--- ,r  
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For any p such that A ~p) has an or thonormal  basis as in (44) - -  which includes all 

p ~  2 -  we have Np = l-IT[~p ~,, and each x ( " ~ E A  (~) has a unique expression 

x ~p)= E~=~x (~'', x ~ ' i ) E  ( a ( " ) .  The elements of this cyclic group are k a  ~p'', k 

running over a complete set of residues rood p% Arguing as before we deduce 

that if yCp)= Eh=l k ( p . , a ( , . ,  then 

h 

g ~ ' ( y )  = 1-I g~"' (y )  
(46) '=' 

g~P.i'(y ) _ __1 f,(k,olCP'J)). . . f i (kra  ( ' ' )  

X $~/k,kz+ +k, k~P.',~Ot (P" j), Ot(e'i)). 

We now return to the case A = J, N = A, W = fl. Let r => 1, u , . . . ,  u, E Z 

and set M = M ( u ~ , .  �9 u,)  = S T ~ ' S  �9 �9 �9 T~,S. There are r powers of T and r + 1 

S's. Let Co= ( -  i ) " ' 2 / ~ - A ,  cj = v ( S T  ~ ' . . .  S T  ~ , , S ) ( -  i ) " ' ~ . . f j  = ea ~j, j = 

1 ,2 , - . - ,  r, then by (41) go = co = t ( S ) ,  gl = ctg~o~,'" ",g, = c,g~_,f, gives g~ 

t ( M ) .  Let 

(47) v ( u l , "  ", u,) = I-I v (  S T y ' ' ' '  S T " t , S ) ,  
j = l  

A=II . r~A ., A. being the highest power of p dividing A, and for p J 2  let 

JtP)= ~)~=l(a (p'i~) be the orthogonal  decomposit ion for J(P) as in (44) with the 

notation used there. By (40) each qt,(a ~p'') is a primitive p q" root of unity, say 

(48) ~p. j=exp(2~riw'P" ' /p ' , )  where " LII 'P,'II2= 2 w ' ' "  p "J 

Equations (45) and (46), taking into account the nature of Co, imply, for 

M = M ( u ~ , . . . , u r ) ,  [3E  J, 

t (M,  [3) = v ( u l , . . . ,  u r ) ( -  i) ("m~'+" I-I t(P)( M,  [3) 
ppn 

(49) 

1 ~] ~"'(a0. . .  ~",(a,)~(a,, a2)""" fi(a,, [3'P') t(P)(M' [3) - (V~p) '§ ~,.....~,~s',, 

and for p ~  2, t(P)( M,  fl ) = 1-I~ , t(P' i)( M,  [3) 

t(e'i)(M' fl)  = (~/pr k,.....k, modp'J 
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where [3(~) is the c o m p o n e n t  of /3  in J(P) and k ( P " a  (p'" the c o m p o n e n t  of /3  (e) in 

The  sum in the formula  for t(P"(M, [3) is like a Gaussian sum but its evaluat ion 

is not immedia te ly  obvious.  Let  m be a positive odd integer,  ~" = e 2,'W/" a 

primitive ruth root  of unity, u~,. �9 -, u~, k a sequence  of integers and define 

(50) G(Ul, " " ", U,, k, ~) = ~,  ~.,~, . . . . . .  ,k~,-zk,~ . . . . .  2k,k 
k l, " " ", k, rood m 

The sum in (49) is of this type with m = p'J, ~" = ~'p.s, w = w (p'" and k = k (p'" 

Before  giving the evaluat ion of G we need some more  notat ion.  Let  Bo = 1, 

B1 = ul and for j _-> 2 Bj = usBs_~ - Bj-2, let dj -- (Bs, m),  j = 0, 1, 2 , . . .  and define 

B~ by B~Bj - ds mod m. This last equat ion has at least one  solution mod m and it 

may  have more,  in any case B;  is any solution, it will not  matter .  No te  that 

( . . )  M ( u ~ , ' . . ,  uj) = B, - Bs-~ for ]" = 1, 2 , . . . .  This is t rue for/" = 1 and if t rue for 

j _-__ 1 then 

M ( U I ' " "  "' UJ' Uj+I)~ (B j  :~ / ( U J l  I --g)-~" (B j  " ) 
- B s _ ,  §  s �9 

In part icular  (Bs, Bs-l) = 1 = (dj, d,_,) always. 

THEOREM 2. 

(51) 

Let  G = G ( u l , . ' . ,  u,, k, ~). With the above notation 

G = O  if d, ~/ k and if  d, l k then 

= rl, ~-a,a,_,e'~(k/a,~ 

The symbols ( w ) ,  ( ~ , )  

are Jacobi symbols and "7, = 71(ul,'" . , u , , m )  is a fourth root of  unity not 

depending on w or k whose value is given below in (52). 

PROOF. By induction.  Take  first r = 1 and to simplify we momenta r i ly  drop 

the subscript 1. Consider  then 

j rood m 

and let d = (u, m).  If d = 1 let u'u  = 1 mod m, write u] z -  2jk - u ( j  2 -  2u ' jk )=-  

u(] - u ' k )  2 -  u ' k  2 mod m and as j goes over  a set of  residues mod  m so does 
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j - u'k. Thus  G(u, k, s r) = G(1 ,0 ,  ru')~.-,'k,. The  classical result  on the Gauss ian  

sum is that  if z = e 2 ~ " / "  is  a primit ive  ruth root  of unity, m odd,  then 

z j~ is X / - - m ( a ) e ( m ) w h e r e  e ( m ) =  X , / ( -1 )  'm-1'/2 G(1 ,0 ,  z )  = 
j r ood  m \ t r y ~  

which is 1 if m -= 1 ( rood4)  and i if m - 3  (mod4) .  So 

Say now (u, m )  = d > 1. Set u = duo, m = dmo, (u0, m0) = 1 and as j rood m take  

j =- hmo + f, h rood d, f mod  too. Then  

G(u ,k , ( )=  E ~ ~(~'%+~247 E ~,.,,-2~ E ~--2-,okh 
h rood d / rood  mo h rood d 

[ m o d  mo 

since umo =-0 rood m. With z = ~.-2,,ok which is a d t h  root  of unity the inner  sum 

is Eh ~.o~ d Z h which is 0 unless z = 1 where  its value is d. But  z = 1 if and only if 

2rook =-0 rood m and since m is odd  this is exact ly when  k =--0rood d. Thus  

G(u,k,~)=O if d ~" k while if d [ k  let k = d k o  so G(u,k ,~)= 
dEtmod,~..r2-21k =dG(uo, ko,~d). ~d is a pr imit ive  moth root  of uni ty and 

(u0, too) = 1 so by our  initial result  

dG(uo, ko, ~d) = dX/ m--oo (--2oo) rll(~d)-u;k~~ 

= ( u-2~ ~ e(mo). where  u~uo--- 1 m o d m o  a n d  T/1 ' , t oo /  

Now dX/-moo= d X / m / d =  X/mmV~ and (~.d)-.;k~= Sr-~.'(~,~ where  u'u =- 
d m o d  m. Also 

a fact abou t  the Jacobi  symbol  that  we shall f requent ly  use. W e  see now that  (51) 

is t rue  for  r = 1 and 

Suppose  now that  the t h e o r e m  is t rue  for  posi t ive integers  _<-r where  r is a 

posi t ive integer  and that  f u r t h e r m o r e  
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' s=, \ m l ( d j  l d j ) i \ m l ( d s _ i d j )  ~ ' 

this coinciding with the result obta ined for r/, above.  Consider  

O(u,,...,u,,Ur+,,k,~)= ~, C",+,'2-2'kO(u,,...,Ur, D~). 
,rood m 

By the induct ion hypothesis  the inner sum is 0 unless j --- 0 rood d, whe reupon  

writing ] =- d,h, h mod m /dr we obtain 

- - - / w  \ ' / w  ] G(Ul"'"u"u'+"k'C)=(Xl-mm)'Vartm} td,,/n' 2 
h rood (m / dr ) 

= CG(ur+,d, - Br_~B', k, ~d) 

where C is the produc t  of the terms to the left of the summat ion .  Let  

U = u ,+ ,d , -B ,  ~B',, z = ~.d. so by our  initial result for r = 1 G ( U , k , z )  is 0 

unless d = (U, m / d , )  divides k where 

( w )(w) 
a ( U ' k ' z ) =  m~Z-~-d'X/d ~ 2 n(U'mld')(~d')-dU'(k/d~ 

Here  

U ' U - d m o d m / d ,  and r l ( U , m / d , ) =  m / ( d , d ) ]  ~,d " 

Now by definition B',(B,/d,)=- 1 mod  m / d ,  so 

U =- B' ,(Br/d,)U =- B',B,u,+~ - B,_~B',mod re~d, =- B',B,+I 

by definition of B ,+ ,=  Ur+lB, -B,_ l .  Then  d = ( U , m / d r ) = ( B ' , B r + ~ , m / d , ) =  

(B,+~, m / d , )  (since (B',, m ~dr) = 1) = (B,+.  m)  (since (Br+l, d,) = 1) = d,+~. Thus  

we have U =- B',B,+, mod m / d,, d = d,+~ so 

U / d - ~  

[ U I d  B', 
I (d ,d ) /  ( \ m m/(d,d,+l)] \ 

B',B,+,/ d,+, mod m/(d,.d,+,), 

g+l/d,+, Z', ml(d,d,+O/ and (. =(m B'ld' m/(,~,d,+,)l /('#,'~r+,)) 
since B'rB,/d, = 1 mod m/d , ,  a f o r t i o r i  mod  m/(d,&+l). Finally U '  is a n u m b e r  

satisfying U'U/d,+I =- 1 mod m/(d,d,+l) but 

(B' , . . , (Br/d,))U/dr. ,  ~ B'r+l(B,/d,)B'r(B,+l/dr+~) -= 1 mod  m/(d,d,+,) 

so one can take U'~B'r+~(B, . /d , )modm/(d,d ,+,)  and then d,d,+iU'=- 
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d , + l B , B ~ l  mod m. Putting these values into the above formula for G(U, k, z)  and 

noting the value of C the proof is finished. 

The proof also shows that (52) is indeed the correct formula for rl,. Let us try 

to simplify it. Employing the appropriate multiplicativity of the Jacobi symbol in 

both numerator and denominator the first factor in the j th  term of (52) can be 

expressed as 

(B,_,/d,, [Br-,/d,, [B, [Br ,/dr-, 
m l ( d r , d , ) , = \  ra ids_ , )  ) =  ) \ dj / \  d, } \ dr \ m/dr-~ 

and a similar result holds for the second factor. Regrouping, 

j~l \ d l  J \ d j - - | J  " 

We see that each term ((Bj , /dj_,)/(m/dj_,))  will occur twice, once in the 

( j -  1)st and then in the j th  term of the product, hence gives ( - 1 )  2= 1, except 

for ((Bo/do)/(m/do)) which occurs only in the first term, but has the value 

( i / m )  = 1 anyway, and the term ( (B , /d , ) / (m /d , ) )  which occurs only in the rth 

term. Also for j => 2, B, = ujBi_, - B,_2 =- - B j -2  mod dr_, so that 

dr l \ d r _ , j \ d  r , /  for j = 2 , . . . , r ,  

and this is true for j = 1 also if we set (B_l/do)= 1. Thus 

,=, \ 4 / \ d , _ , / \ ~ , , / \  d, J\d,_,! 

= [ B, / d,'~ [ - B, , "~ f l  [ - l ~ [ d _ ~ ( d _ _ _ ~ )  ( m ) 
\ r e ~ d r / \  d, ]r=, \ - ~ f J \  d r J d,_, e ~ . 

By quadratic reciprocity 

d, L ~ d, / d,_, 

except if dj_, - 1 (mod 4) and d i ~- 3 (mod4) when it is - 1. Also e (m/dj_,dj)  = 
e (m)  if di ,dr -~ 1 (mod4) and --- e ( - m )  if dr_,di =-3(mod4). Hence 

dr / \  dr ! 

if dr_, =- dr (mod 4), = e ( - m )  if d r - , - 3 ,  dj- - - l (mod4) and = - e ( - m )  if 
'd,-,--- 1, d, -= 3(mod4). Thus 
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= fB ,  Id , ] (  - B,_,'~ e(m)Oe(_ m)b(_ e ( -  m)): 
(53) r/, \ ~ - 7 ~ , 1  d, ] 

where  a is the number  of j, 1 _-< ] -<_ r, such that  dj-i - dr (mod 4), b the n u m b e r  of 

j such that d s _ l - 3 ,  d s - 1 (mod4)  and c is the number  of j where  ds-~-= 1, 

ds -= 3 (mod 4). Clearly a + b + c = r. 

In our  applicat ions we shall have m a power  of an odd prime.  Assuming this 

so, since (ds-~, ds) = 1 and d~-l, dr divide m one  of ds-1, dr is always 1, so if for  

s o m e / ,  ds =- 3 (mod 4) then ds-~ =- dr+, ~- 1 (mod 4). Let  j ~ , . . . ,  jc be those indices j 

in 1 , . - ' ,  r where  dr -= 3 (rood4);  then/ '1 + 1 < j2, j2 + 1 </'3, �9 �9 ", c thus having the 

same meaning  as in the previous  paragraph.  The  cor responding  b indices are 

j ~ + l , j 2 + l , . . . , j ~ _ ~ + l ,  and also j < + l  if jc < r, i.e., b = c - 1  if d , ~ 3 ( m o d 4 )  

and b = c  if d, =- l (mod 4), a = r - b - c  is r - 2 c + l ,  r - 2 c ,  respectively.  A 

little calculation yields e ( m ) a e ( - m ) b ( - e ( - m ) )  c=e(m)'+~/e(d,m) in all 

cases. Thus  for m = pC, p ~  2, 

= f B r l d , ' ~ f  - B,-1) e (m)  "+' 
(54) rl" \ m / d, ] \ d, e (d,m)" 

After  this diversion let us re turn  to the modula r  g roup  and the nota t ion of (48) 

and (49). Note  that  every  e lement  of F has an expression as some M(u~,. . . ,  u,). 
For  example ,  E = M(0,  0, 0), S = M(0,  0, 0, 0), T" = M(0,  u, 0) and 

M(u , , . . . ,  u , )M(u( , . . . ,  u'~) = M(u , , . . . ,  u,,0, u ( , . . . ,  u:,). 

now M = ( o  b) d fix a representa t ion  M = M ( u ~ , . . .  u,)= Given 

0 *t B , -  B, 1 SO B, = c, -B,_~ = d. Applying T h e o r e m  2 and (54) to the last 

equat ion  of (49) with m = p'J ( p / 2 )  and setting c (p'j~ = (B,, p ' , )  = (c, p 'J)  in place 

of d .  we deduce:  

t(~'S)(M,/3) = 0 if c (p's) ,~ k @'j) 

and 

Ic,.,,, [ w,.,,>],f 

x (c(,,,.p.,) . , . ,  

if c<")l  k @'s>. 
Here  c '  satisfies c'c - cr 
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Define F(~)={M: t (M,[3 )=O for all [ 3 ~ 0 m o d ~ } .  Define the function 

X = Xz on F ( ~ )  by X~e(M)= t(M,O). Since Ilt(M)ll = 1/x/-~ it is clear that 

I x ( M )  I = 1. Note that T" ~ F ( ~ )  and x ( T  ~) = 1. (38) with M1 = M ~ F ( ~ )  and 

M2 = M -~ shows that M -~ E F ( ~ )  also. Furthermore if M~, M: ~ F(~) ,  MIMz 
F ( ~ )  also and x(M~M~) = v(M~, M~)x(MOx(M~).Thus F ( ~ )  is a subgroup of F 

and X is almost a character of F ( ~ )  except for the factor v (M~, M~) = --- 1. If n is 

even then v(M1, M~)= 1 always and in this case X is a character of F(5~). (38) 

shows in general that if M ' =  MoM, Mo ~ F(Lr then 

(56) t(M') = v (Mo, M)X (Mo)t (M). 

If ~ has A odd - -  we have remarked in (5) that n is then even - -  we can 

identify F (~ )  and the character X~e. 

THEOREM 3. Suppose the even lattice ~ has A odd and n even. Set A~ = 
I 'Iplap el, the least positive integer such that AI~ C~. Then F ( ~ )  is 

Fo (A1)={M=(  adb): c - m o d A , }  

and X~e is the character o[ Fo(A1) given by X~e(M)= (d/A). 

PROOF. It is clear that A1 has the stated property as p',  is the maximum of the 

orders of elements of J(P) and J =  t~piaJ (~). Note that A~IA, uses the same 

primes as A and A~ = A if and only if J is cyclic. Say M = ( a  b )  E Fo(A1); then 

c ---0modp "j for all p and j and (55) shows that t(~"(M,/3) = 0 unless k (p~ 
0 m o d p  ~. By (49), t(M,[3)=(-i)("/2)('+l)IIp.it("(M,[3) is then 0 unless the 

component [3(P~ of/3 in the cyclic group (a  ~ ' ' )  is 0 for all p,], i.e., t(M,/3) = 0 
unless /3 = 0 in J. This shows Fo(A1)CF(~). On the other hand, if M ~  Fo(A 0 

then for some p , c ~ O m o d p  ~, c(P"lp"-~ and the element /3 = 

p'~-~a (p" ~) ~ 0 mod ~. But clearly by (49) and (55) t(M, [3) ~ 0 so M ~  F(~) .  Thus 

F ( ~ )  = Fo(A1). Now returning to M E  Fo(A1) let us compute x ( M )  = t (M,0)=  

( -  i)("/2x'*'l-Iplal-I~ t(~"(M,0). By (55), since now c (p'" = p'J, 

t( '"(M,O) = ~-~ \ - - ~ /  

Define 

h { w(P"] ~] 
- -  ~ _ _  o (57) w = w(ze)= p,,I-I ,=,1-] p., /, p,,1-I ,=, 

It is not immediately apparent that W is an invariant of LP since it depends on 
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the orthogonal basis chosen in each J~) but we shall express W in terms of e 

which is clearly an invariant of Ze which shows W is also. We have now that 

and the proof will be complete if we show that 

(58) ( -  i)"/2 We = 1, 

the promised fundamental relation between W, e and n. Consider the element 

M = - E = ST~ = M(0) E Fo(A~) so that our above formulas give 

x ( -  E)= ( ~  ) ( ( -  i)"/2 We )2 = ( - ~  ) ( -  i)"e 2 

since W = _ 1, W 2= 1. On the other hand for any function f(r), 

f I _E=( -1 )" /2 f  
n / 2  

by definition of the stroke operator. Thus tk~[o~ =(-1)"/2tk.z[o~ but 

+~e [o]] E = X( - E)t~e [o] by Theorem 1' and the definition of X( - E)  = t( - E, 0). 

So we have x ( - E ) = ( - 1 )  "/2 which upon comparison with the previous 

expression for g ( - E )  gives 

- 

Next consider M =  ( --1 ! / =  STSTS= M(1, 1)U Fo(A1). Then 
\ o 1 /  

x ( M ) = ( ~ ) ( ( - i ) " / z w e ) 3 = ( - i ) 3 " / 2 W e ,  

where we have made use of (59). But M = ( - E ) T  -~ so that x (M)  = 
X ( -  E)X(T-l)  = X ( -  E)  = ( -  1) "'2. 

Comparing the two values for x (M)  gives (58) and the proof is finished. 

COROLLARY. The following table relates n,A, W and e" 

(60) 

n mod 8 A mod 4 W 

0 1 

2 3 - ie 

4 1 - e  

6 3 ie 
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PROOF. Since W =  W -1= -+1 (58) shows W = ( - i ) " 1 2 e  which is the last 
column. Squaring, 1 = W 2= ( -  1)"he 2 and (59) show ( -  1) "/2 = ( -  l / A ) =  

( - 1 )  (n-w2 which is the middle column. 

Note that e = i H where H is the number of cyclic summands of J of order p" 

with p --- 3 rood 4 and e odd. W has a much more complicated definition and the 

above relation between them was unexpected. The character X.z is identically 

one only in case A is a square. 

Keeping from now on Ge as in Theorem 3, Theorem 1' yields: if M = 

( a  d ) f E  Fo(A1) ' then for every x, y E M  and admissible sequence s, 

(61, qs(d') [Y]I = exp(~riv(x, y, M(L, ) (d )6~ ,  [ ax+ Lcy ] 
M t(b/L)~ + dy j" 

For any M E F we can compute t(M) via (56) if it has been computed for a set of 

coset representatives of the right cosets of F mod Fo(A1). It can be shown that 

these may be chosen of the form E, ST k and STkST j for suitable integers k and 

]. By (41) and t(S, fl) = ( -  i)"lz/'~/-A we have t(STk) = ( ( -  i)"12/~/-A)O k and 

t(STkST j) = t(STkS)O j so one has only to compute t(STkS) which can be done 

using (49) and (55). It is precisely in this computation that something must be 

known about the w ~p''. However, if A~ = p this situation does not arise and the 

calculations simplify. A~ = p if and only if A = ph and J is a direct sum of cyclic 

groups each of order p, i.e., J is an elementary abelian p group. It is easy to see 

that [F: Fo(p)] = p + 1 and F = Fo(p) U (UkFo(p)STk), k going over a complete 

set of residues modp. In fact, if M =  d fiFo(p) then M = M o S T  k where 

ca ) ck - d ~ Fo(p) where k satisfies ck =- d modp, i.e., k =- c 'd,  c * c =- 

1 modp. X(Mo) = (c/A) and (56) shows 

t(M, fl)= (c / A)t(ST k, fl)= (c / A)((-  i)~'2/X/A)~k (fl). 

W h u s i f A = p h ,  A , = p  t h e n f o r e v e r y M = ( a b )  w i t h c r  

x [ c ~ ( - i )  ",2 
6~)[y ] M=exp(~riv(x' y'M(L))\A] V ~  

(62) 

lax + Lcy + ~] 
~,~, [(b/L )2 + dy J" 
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Equation (61) shows that ~ [ ~ ]  (r) is in general not a modular form for Uo(A1) 

since besides the multiplier the transformed function has a new characteristic. If 

certain algebraic conditions are put on x and y one does obtain modular forms 
for some subgroup of Fo(A~). 

Suppose m is a positive integer and [~] a characteristic with x ~ (1/m)~, 
y ~ ( 1 / m ) ~ * .  Since ~ = LC~ * one has (1/L)s and L]E(1/m)~.  

T h e n f ~  E F a n d 1 3 ~ t h e c h a r a c t e r i s t i c c  

[ X ] = [ a x + L c y + ~ I  
[ (b/L)g + dy ] 

has X E (1 / m)~, Y ~ (1 / m )L~*. Define F~'~(~, m) as the space of functions f ( r )  

spanned by all complex linear combinations of ~ [ ~ ] ( z )  with x E (1/m)~, 
y E ( 1 / m ) ~ * ,  (s) a fixed admissible sequence. By Theorem 1', our above 
remarks and Proposition 4(i), it follows that F"~(~, m) is a finite dimensional, 

complex vector space and f---~flM is an automorphism of F~'~(~, m) for each 
M E F, giving a representation of F by nonsingular linear transformations of 
F~'~(ZP, m). Actually one obtains only a finite group of linear tranformations as 

there is a subgroup of finite index, say G, such that f ]M = f for all M E G. Thus 
the f E  F"~(3f, m) are all modular forms of weight (n /2 )+  l for G. Determina- 

tion of the group G depends on algebraic properties of Le and m but we can 
make a general summary as follows: 

THEOREM 4. Let ~,A, n, A~ be as in Theorem 3 and F"~(~, m) as defined 
above. Assigning to M ~ F the linear transformation f ~ f IM of F"~(2 e, m) gives a 
representation of F by a finite group of linear transformations. The kernel of the 
representation Gm(~,m) is a normal subgroup of finite index in F. All 
f ~ F"~(~, m) are modular forms of weight (n/2)+ l for Gm(~, m): 

f l u = f ,  MEG"~(~,m) .  

The group G~'~(~, m) contains the principal congruence subgroup 

b 
F(m2AI)= {(  a d) - - (10  01)modm2A, } . 

PRooF. Clearly the kernel of the representation is a normal subgroup and 
everything follows if we show that Gm(~, m) contains F(mZAd since this latter 

has finite index. Now for M =  ( a  d )  ~ F~ have group (61), b'(X, Y, Mr 
/ 

as in (37), x = ( 1 / m ) s  ~ and y = ( 1 / L m ) ~  with s ~ , ~ .  By (39), 
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are Alth roots of unity whence 

srx = exp ( L [  [ x [[2) and ~'y = exp(~riL [J y [[2) 

are m2Alth roots of unity. Since h l~ .  ( ~ / L ) E  ~ .  ~ *  = Z, ~x,y = e 2"n '  is also 

an m2A~th root of unity. Then 

e r "-~ ].-ab j.-cd j.-bc 
~ x  ~ y  ~ x , y  

is an rn2Alth root of unity. The transformed characteristic in (61) may be written 

a s  

x + (a - 1)x + c L ]  x + 

say. I f a - l - c = - 0 m o d m A t a n d b = d - l - = 0 m o d m t h e n t  x E ~ , v E ~ * a n d  

Proposition 40) gives 

x + ~ ]  = e2"xv~b~) [ y q,~)[y + x ]  

Y 

Note that our congruence condition along with a d - b c  = 1 implies d--- 
1 mod mA~. Let then G(A1, m) be all those M satisfying a - 1 = d - 1 =- c = 

0modmA1 and b - = 0 m o d m .  Clearly G(A1, m) is a subgroup of F and is 

contained in Fo(AJ f3 F(m). For all M ~ G(A~, m) we have now: 

q,(~)[x]l / d \  (2-o)b -~d d- , -~  (,) X ] .  

Since A~ and A have the same prime divisors d =- 1 rood m A~ implies d = 1 rood p 

for each p [A whence ( d / p ) = l ,  ( d / A ) = 1 .  As ( 2 - a ) b = b + ( 1 - a ) b = -  

b mod m2A~, cd = c + ( d  - 1)c --- c rood m2A,, bc =- 0mod  rn2A~ and all the ~"s  

are m~A,th roots of unity, the above equation becomes: 

(63) 6 ~ ) [ y ]  M=~bx~yC~d'yl~l(~)[ x , M E G ( A , , m ) .  

If now b = c -= d - 1 = 0 rood m 2A~ all the powers of the ~"s are 1. Thus for all 

M E  F(m2A,), = a s  asserted. 
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4. Examples 

Let  K be  an a lgebraic  n u m b e r  field of degree  n ove r  the ra t ional  field Q. An  

i somorph i sm o. of K / Q  into C / Q  is called real if O . ( K ) C R  and o therwise  

complex .  If o. is complex  then  ~ given by ~ ( a )  = o . (a) ,  a E K, is an i somorph-  

ism distinct f rom o.. It follows - -  as K has n distinct i somorph i sms  - -  that  these  

can be a r ranged  as o.~, �9 �9 o., with o.~, �9 �9 o.,, real and the remain ing  2r2 complex  

with o.,l+,~+k = &,+k, 1 -< k < r2. rl, r2 are nonnega t ive  integers  and r~ + 2r2 = n. 

The  map  o.: K --> M = M ,1, ,~ given by 

= 

is a one -one  map  l inear ove r  Q. For  this and fur ther  points  of  n u m b e r  theory  

quoted  in the sequel  we refer  to Borevich  and Shafarevich  [1], especial ly 

chapters  2, 3 and 5. Accord ing  to their  t e rmino logy  a full modu le  in K is a 

finitely gene ra t ed  subgroup  of the addit ive g roup  of K which contains  a basis of 

K. Equiva len t ly  a full modu le  in K is a subgroup  of the addit ive g roup  of K 

which is a f ree  abel ian group  of r ank  n. If A is a full modu le  in K with basis 

a l , " - ,  a ,  then o . (A)  is a lattice in M with basic matr ix  A = ( o . ( a l ) , ' '  ", cr(a , ) ) .  

The  discr iminant  D(O.(A))= (det A) 2=  det '  AA = det  (o . (a , ) .  o . ( a j ) ) =  D ( A ) ,  

the discr iminant  of A. Obse rve  that  for  a,[3 E K, o'(a).o.([3)= 

E~'=I ~ (a)o.j(13) = E~=, o.i(al3) = tr (a[3) where  tr is the t race of K / Q .  In par t icu-  

lar, o . ( a ) ,  o-([3) E Q for  a,  [3 E K and o . ( a ) ,  o.([3) E Z for  a,  [3 E Ix, the ring of 

algebraic  integers  in K. 

For  our  purposes  we seek  fields K where  o . ( a ) - o - ( [ 3 ) E  Q for  a,[3 E K. 

U nfo r tuna t e ly  o . ( a ) ,  o.([3) need  not  be  rat ional ,  for  o'([3) = o ' (~ )  is not  t rue  in 

general .  For  example  if a = ~ >  0, ~o = e z~3, K = Q ( a )  has n = 3, r~ = h = 1, 

(~ 
but  o . ( a ) / o . ( & ) .  Also II o.( )ll o.(~)"  = is i rrat ional .  The re  are two 

cases where  o . ( a )  = ~r(6) is true.  First, if K is total ly real,  i.e., r2 = 0, n = r~, in 

which case o- (a )  = o . (~)  = o . (a )  as all quant i t ies  are real.  Second,  suppose  Ko is 

a totally real field of degree  no and ~ E Ko is total ly negat ive:  o.}~ 

j = 1, 2 , . . . ,  no, the or} ~ being the i somorph i sms  of Ko. Then  K = K o ( V ~ )  is a 
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totally complex field of degree n = 2no, r~ = 0, r2 = no and t r ( a )  = t r (6)  holds in 

K. Verification of this is left to the reader. A normal extension K of Q with 

{ 1, c }, c complex conjugation, a normal subgroup of the Galois group of K is of 

this type for then trj (6)  = ~ (ca) = ctrj (a) = trj (a) for every automorphism trj of 

K. In particular every cyclotomic or quadratic field falls into these categories. 

Let now K satisfy t r ( c i ) = c r ( a )  for all a E K .  Then t r ( a ) . t r ( / 3 ) =  

~ ( a ) ' t r ( / 3 ) - -  t r ( a /3 )C  Q for all a,/3 ~ K and t r ( a ) . t r ( / 3 ) E  Z for a,/3 E IK. 

Thus for any full module A C Ix, Lr = t r (A)  is an even or odd lattice in d,t 

according as tr ( ad )  is an even integer for all a E A or not. In the complex case 

tr(I,~) itself is even for tr(aoT) = 2tr,~o/O(ati) where K0 = K A R, whence every 

~r(A) is an even lattice. In any case, if Lr = t r (A)  is even, by the results of 

Section 1, I D ( ~ ) I = L " A  where L=g.c .d .{~tr(ad) ,  a E A }  and A =  

[L~*:  ~ ]  = [LA*:  A ], A* being the complementary module (with respect to 

the trace) of A. Determination of the number L in general appears to lead to 

some deep questions of number theory. For applications of our theory we are 

particularly interested in the case where A is odd. If L is unknown this can be 

achieved by requiring D ( A ) =  D ( ~ ) =  (-1) '~LnA to be odd. Since D ( A ) =  

[IK:A]2Dk, where Dk = D( Ix )  is the discriminant of K, D ( A )  will be odd 

exactly when Dk is odd and A has odd index in IK. Recall also that A odd 

requires n even. Suppose K is totally real, A a full module in IK such that D (A)  

is odd and o-(A ) is an even lattice. Then D (A)  = I D (A)  I = L "A --= A mod 4. But 

by Stickelberger's theorem of number theory, the discriminant of a full module 

of algebraic integers is ~-0 or 1 mod4,  here then D ( A ) - = l m o d 4  by (60), 

A ~- 1 mod 4 implies n ~ 0 mod 4. Put another way, if K is totally real field of 

degree n -= 2 mod4  and A is a full module in IK with D ( A )  odd then or(A) is an 

odd lattice, i.e., there is some a E A such that t r ( a  2) is odd. 

In somewhat greater detail consider the field K = Q(~'), ~" a primitive p th  root 

of unity, p an odd prime. The degree of K is n = p - 1, rl = 0,  r2 = (p - 1)/2 and 

the discriminant Dx = ( -  1)(P-W2p p-2. ~ = tr(IK) is an even lattice in d~ = dC"~ 

L = L(Lr = 1 here, since by Proposition 3(i), for any ,~,/x E Lr )t �9 = 0 m o d L  

but for A = tr(~'),/x = cr(1), A ./.i = try" = - 1. Then A = I O ( ~ ) l  = IDK I= pp-2 

is odd and is the order of the group J mod ~r ~ = ~ * .  Here though ~ = cr(I~) = 

o ' (IK)= ~ and ~ * =  cr(I~)= cr(9?~ ~) where c~K is the different of K. Thus 

= o-(~ ~:~). With (a )  denoting the principal ideal in K generated by the element 

a, it is known that ( 1 -  ~') is a prime ideal and ( p ) =  ( 1 -  ~')~-~ is the prime 

factorization of p in K. Since Ncg~ = I D,, J (N~K is the norm of the ideal Or) and 

N(1 - ~') ='p, we must have ~gr = (1 - if)p-2, O~ = ((1 - ~)/p) = ((1 - ()/p)Ix.  It 

follows that for all a ~ 0~, pa ~ IK. So O-r~/Ir is an elementary abelian p-group, 



Vol. 24, 1 9 7 6  CONSTRUCTION OF MODULAR FORMS 179 

a direct product of p -  2 cyclic groups each of order p. Here  then A = ph, 

h = p - 2 ,  A l = p ,  e = e ( p ) P - 2 = l  or i according as p - 1  or p - 3 m o d 4 ,  

F ( ~ ) = F o ( p )  and the character X:~ is x ~ ( d ) = ( d / A ) = ( d / p ) ,  the Legendre 

symbol. Now by (60) we see that W = l i f p ~ l o r 3 m o d 8 a n d  W =  - 1 i f  p -=5  

or 7 rood 8. By Theorem (3) and (62) we now know how the functions ~b~)[;](r) 

transform under any M E F. One might now consider ~ = ~ ( A )  for any full 

module A in IK and also more general cyclotomic K but we do not pursue this 

topic any further here. 

Finally, we look more closely at an imaginary quadratic field K. Again we 

mention that our basic reference for this is [1, chap. 2]. Let ! -- IK be the ring of 

algebraic integers in K and D = D ( I )  = D~ the discriminant of K. For K we 

have n = 2, rl = 0, r2 = 1 and the embedding tr of K into ~t = ~/o. 1 is given by 

a - - , o ' ( ~ ) =  ~ , 

and II  ( )112 = trK/o(ad) = 2NK/o(a). In this special case we see that the map ~ 

does not really depend on K, that is, it extends to a map o-: C - - - ~  ~ by 

o ' ( a ) =  ( ~ )  for all a ~ C, coinciding with o ' (a)  as above for a K. Further- 

more, for a, fl ~ C, 

o ' (a) -o ' ( /3)  = ct/3 + d/3 = 2 Re (a /3)= trc/, (aft) 

and II ~  2= 2[ ~ 12= 2 N c M ~ ) .  From now on we let tr stand for trc/R and N 

for Nc/R, so tr restricted to K is trK/o and similarly for N. Every full module A 

of K has a coefficient ring R = { x E K: xA C A }. This coefficient ring is both a 

ring and a full module, such an object is called an order  in K. Every order  in any 

field is contained in the ring of algebraic integers, this being the maximal order. 

In a quadratic field K the order  is determined by its index in the maximal order 

I: for each integer g ~ 1 there is a unique order Rg of index g in I. Let 

D~ = D ( R g ) =  g2D. A full module A with coefficient ring R, and which is 

contained in R~ will be referred to simply as an Rg ideal. The reader not used to 

these notions can take A simply as an integral ideal of K, i.e., g = 1. If A is an R s 

ideal the index [Rg:A]  is called the norm of A, NA. 

THEOREM 5. Let A be an Rg ideal, ~ = or(A) the corresponding even lattice in 

.~o, 1, L = L ( ~ ) ,  A = A(~).  Then L = NA, A =[Og  I, ~ = LC~* = or((1/X/~,) A )  

and J = ~r / ~ is (isomorphic to via or) (1/~,/-D,)A/A. A is odd if and only if g and 

D are odd. If  A is odd and (L, D~) = 1 then J is cyclic, A1 = A, F ( ~ )  = Fo(g21D I) 

and the character X~ coincides essentially with character of the field K: X:e(M) = 
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(d /I D I). The invariants W, e of ~ then are e = i n where H is the number of prime 

factors of D which are =- 3 rood 4, W = - ie and furthermore (NA/I D 1) = 1. 

PROOF. It is known that for 0/,fl @ A,  N A  divides each of the numbers 

NO~, Nfl an'd tr0//3. As L is the greatest common divisor of the numbers 

�89 tr(0/) [r = NO~, 0/E A,  one has N A  [L. On the other hand if 0/1, 0/2 is a basis for 

A (as a free abelian group) - -  which we denote by A = [0/,,0/2] - -  the 

fundamental correspondence between full modules and binary forms states that 

N(x,ot, + x20/z)= (N0/,)x~+ (tr0/ld2)xxx2+ (Na2)x~ has N A  as the g.c.d, of its 

coefficients. But each of these coefficients is divisible by L so L [ N A .  Thus 

L = NA. Now D ( A ) =  (NA):Dg while also D ( A ) =  D ( Z f ) =  - L 2 A  by Proposi- 

tion 3, thus h = [D s 1. With A = [0/1, a2], a basic matrix for ~ is 

( 0 / , 0 / 2 ) .  
A = (0- (0 / , ) ,  0-(0[2) ) = ~1 (~2 ' 

A * =  'A -1 is then basic for s and L~.* is basic for L ~ *  = cr(Lfi, *). 8 = de tA 

satisfies 8 2= D ( A ) =  L2Ds and without loss of generality we can assume 

8 = L V ~ s ,  since otherwise 5 = - L X / ~  and we can then interchange 0/, and 

0/2. A calculation then gives 

which shows Le{ * = ( 1 / X / ~ ) A .  Since A = I D~ [= g=l D [ clearly A is odd if and 

only if g and D are odd. If D is odd D is square free, D - - - l m o d 4 ,  

A - = l D [ - - - 3 m o d 4 .  Assuming this to be the case it follows that I =  [1, w], 

oJ = (1 + V D ) / 2  and R, = [1, gw]. 

Since L = N A  = [ R , : A ] ,  for every x ~ R,, Lx  E A which with x = 1 gives 

L C A .  To show ( 1 / X / ~ ) A / A  is cyclic it suffices to show that for k e Z, 

(kL / X/-~g) E A only if k - 0 mod I D~ [ since A = [ D, [ is the order  of the group. 

Say then ( kL /X / - I~g )=0 /EA .  Since A CRs, a has a unique expression as 

ot = a + bgoJ, a, b ~ Z, or kL = 0/X/-l~g = (a + bgto)X/-~g = (a + (bg/2))V'-~g 

+ (bDg/2). Then a + (bg/2)  = 0, kL = bD s/2.  Since g is odd, b must be even, 

kL = ( b / 2 ) D , .  With the extra assumption (L, Dg)=  1 this implies D,  [k  as 

required. 

With J cyclic, hi = A and Theorem 3 gives F(L#) = Fo(A) = Fo(g2[ D [) and the 

character 
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Since the J(P) for different p are mutually orthogonal (in the sense of Section 3) 

and each J~) is cyclic an orthogonal basis of J is {a(P)}ppo, where a ~ is a 

generator of J(P>. We write here a (p~ instead of the more correct ~ ( a ~ ) ,  taking 

the identification by tr for granted. Thus a (p~ here is the a ~'" of (48), the 

corresponding w (p~ is defined by (1/L)2Na (~'~= 2w~ where p" = pC, is the 

order of J(P>. We can take a (p) = (L/V/-~g)(D~/p'), w ~) = LID s [/pe. By Defini- 

tion (57) 

[ w (~___~ ~ 
W = plll-Io,, \ p~ ], e = pjpl'-Io,, e(p~). 

If the highest power of p dividing g is p" then e = 2a if p ;( D and e = 2a + 1 if 

p I D. So in the products for W and e the only primes which can yield a factor 

different from 1 are the p lD and for these 

--~-/ \ p / 

and e (p ' )  = e (p). Thus 

This last product is clearly 

p~O q~o ( ~p ), q prime, 
q r~p 

taken over all two element sets {p,q} with pqlD. By quadratic reciprocity 

(q/p)(p/q) = 1 except if p =- q ~ -3mod4  where it is - 1. Thus the product is 

( -  1) j where j is the number of two element sets {p, q } with p ~ q ---- 3 mod4  and 

pq]D. If H is t'he number of prime factors of D that are -=3mod4  then 

j = ( 2 )  = H ( H - 1 ) / 2 .  Thus W = (L /I D I)(-1) ran-w2. On the other  hand 

e = i  H and since I D l = - 3 m o d 4 ,  H is odd, so e=iiu-~=(-1)(H-' /zi  and 

W = (L /I D I ) ( - 1 )  (H-w2. By (60) W = - i e  gives W = ( - 1 )  ('~-w2 and so 

(NA/I D 1) = (L/I D I) = 1. This completes the proof. 

We note that (NA/I D I) = 1 immediately gives part of the theory as to how 

rational primes factor in K (with negative odd discriminant). Say P is a prime 

ideal of K dividing the rational prime (p). If P #  (p) general considerations show 

NP = p so if p X D, (p/[  D [) = (NP/I D I) = 1 by the last result of the theorem. 

Thus if (p/I  D I) = - 1 (p) remains prime in K. We do not pursue this any further 
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here as the question as to how a rational prime factbrs in K has a full classical 

answer. We mention it only to indicate that our development leads naturally to 

the correct circle of ideas and perhaps it is not unreasonable to expect that 
application of these concepts to other fields will yield new results. 

With A an Rg ideal, ~ = ~r(A) and L = NA the associated functions in the 

notation of Sections 2 and 3 are ~b~)[~ ](r) with x, y E ~ ,  (s) an admissible 

( X ) w i t h x E C a n d a n  sequence. Every vector in ~ we have seen is t r (x)= s 

admissible sequence is either empty or (1,...,. 1) or (2, . . . ,  2) of arbitrary length 

I. It is convenient here to designate these sequences as (1,1) and (2,1) 
respectively and write ~,)[ ;]  for q,=(a)'t'(s) t,,(y)J.r=(x)l We have then for x, y E C: 

In case g and D are odd, (L, g2D)= 1; the above theorem and the previous 

theory give the complete transformation properties of these functions under F. 

Corresponding to the situation of Theorem 4, F(')(A, m) would then be linear 
combinations of the functions ~b~)[;] (r) with o ' (x)E (1/m)~, o ' (y)E (1 /m)~* ,  

x E (1/(mV~))A,  y E (1/(mLV~g))A. The group G(A1, m) of that section is 

of a l l M = ( a  b ~ w i t h a _ l = _ d _ l = _ c _ = 0 m o d m  G(IDg I, m) consisting log t \ c d  / 
and b = 0 m o d  m. For M E  G(IDg I,m) (63) gives 

X 21ri((b/L)Nx-cLNy+(d-1)trxy) (s) X O~,)[y ] ]M= e Oa [ y ] .  

The nature of this root of unity depends on m and K, as will be evident by the 

following considerations. For example, say p is a prime and ~ E K satisfies 

p~: E ! and has an ideal factorization (~) = B/(p), B an integral ideal. If (p) is 

prime in K and ~:E I then B and (p) are relatively prime, N~ = NB/p 2, 
(NB, p) = 1 so N~ actually has denominator p2. If (p) is not prime (p) = p/5, 

NP=p so ~E(1/p)I with factorization (~)=(B/P), (NB, p)= 1 has N ~ =  
NB/p with denominator p. 

Returning to the above functions with x E (1/(mX/~g))A and setting y = 0 

(61) gives for M E ro(I Dg I), 
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~b~)[0 ] M = -2~,~b/L,Nx[ cl ].,s,l-ax] e q J A | b  - �9 \lOll x 

If b ~- 0 mod m, (b / L)s  E (1 / (L X / ~ ) ) A  = A * so using again Proposition 4(i), 

t~t~)[ ; ] [M:  e2~'(ab/L'Nx(J---'~[)l~l~)[ 7 ] �9 

Then 

a 

M(m) = E Fo(m [D, 1) 
m c  

and every element of this group may be written this way. It follows that if we 

consider instead the functions q~)[~] ( r ) =  0~)[~] (m~') - -  as in the transition 

from Theorem 1 to 1' - -  these satisfy for 

(a b)=MEFo(mlDg[) q ~ ) [ ; ]  M e = 2~(m,b/L)nx/[,]__~} d ~ p ~ ) [ ; ] .  

One sees with some change of notation that it is this class of functions from 

imaginary quadratic K considered by Hecke [3], see w (11) and w Satz 7 of that 

paper. However he studies only the case g = 1, so that A is an integral ideal of 

K. It is fitting that we end with this reference to Hecke as it was the attempt to 

understand this work of his that gave us the impetus and inspiration for this 

paper. 
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